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Abstract

A celebrated theorem of Shoda states that over any field K (of characteristic 0),
every matrix with trace 0 can be expressed as a commutator AB−BA, or, equivalently,
that the set of values of the polynomial f(x, y) = xy − yx on Mn(K) contains all
matrices with trace 0. We generalize Shoda’s theorem by showing that every nonzero
multilinear polynomial of degree at most 3, with coefficients in K, has this property.
We further conjecture that this holds for every nonzero multilinear polynomial with
coefficients in K of degree m, provided that m− 1 ≤ n.
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1 Introduction

We begin by recalling a theorem, which was originally proved for fields of characteristic
0 by Shoda [12] and later extended to all fields by Albert and Muckenhoupt [1].

Theorem 1 (Shoda/Albert/Muckenhoupt). Let K be any field, n ≥ 2 an integer, and
M ∈Mn(K). If M has trace 0, then M = AB −BA for some A,B ∈Mn(K).

For any A,B ∈ Mn(K) the traces of AB and BA are equal, and therefore any matrix
that can be expressed as a commutator (AB − BA) must have trace 0. (This observation
is perhaps what prompted Shoda to prove the above result.) Thus, using [Mn(K),Mn(K)]
to denote the K-subspace of Mn(K) consisting of the matrices of trace 0, and f(Mn(K)) to
denote the set of values of a polynomial f on Mn(K), the above theorem can be rephrased
as follows.

Corollary 2. Let K be any field, n ≥ 2 an integer, and f(x, y) = xy−yx. Then f(Mn(K)) =
[Mn(K),Mn(K)].

It is therefore natural to ask what other polynomials f have the property f(Mn(K)) =
[Mn(K),Mn(K)], or more generally, f(Mn(K)) ⊇ [Mn(K),Mn(K)]. In this note we conjec-
ture that this is the case for all nonzero multilinear polynomials f (i.e., polynomials that
are linear in each variable), provided that the degree of f is at most n + 1. We then prove
this conjecture for multilinear polynomials of degree at most 3, over fields with at least n
elements, and characterize the polynomials that satisfy f(Mn(K)) = [Mn(K),Mn(K)] in
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this situation. We also prove that for any unital ring R, the set of values of the polynomial
xzy − xyz + yzx− zyx on Mn(R) contains all matrices with the property that the sums of
the elements along the diagonals above (and including) the main diagonal are 0.

Since [Mn(K),Mn(K)] is a K-subspace of Mn(K), our conjecture and result above can
be viewed as a partial answer to a more specific version of the following question of Lvov [4,
Entry 1.98], which also has been attributed to Kaplansky (see [6]).

Question 3 (Lvov). Let f be a multilinear polynomial over a field K. Is the set of values
of f on the matrix algebra Mn(K) a vector space?

Kanel-Belov, Malev, and Rowen [6] have answered this question in the case where n = 2
and K is quadratically closed (that is, every non-constant quadratic polynomial over K has
a root in K). More specifically, they showed that in this case, the image of a multilinear
polynomial must be one of 0, K · I2 (where I2 is the identity matrix), [M2(K),M2(K)], or
M2(K).

Other special cases of Question 3 have been explored elsewhere. For instance, Khurana
and Lam [8, Corollary 3.16] showed that the set of values of the multilinear polynomial
xyz − zyx on Mn(K), over an arbitrary field K, is all of Mn(K), when n ≥ 2 (along
with more general versions of this result for other rings R in place of the field K). Also,
Kaplansky [7, Problem 16] asked whether there exists a nonzero multilinear polynomial over
a field K which always takes values in the center of Mn(K), or, equivalently, whether there
is such a polynomial whose set of values on Mn(K) is the center of Mn(K). (This question
arose in the study of polynomial identities on rings.) Such polynomials have indeed been
constructed by Formanek [5] and Razmyslov [10].

All the results and questions mentioned above are stated for multilinear (rather than
arbitrary) polynomials, since in general, the set of values of a polynomial on Mn(K) is not
a subspace. More specifically, Chuang [3] showed that if K is finite, then every subset S of
Mn(K) that contains 0 and is closed under conjugation is the image of some polynomial. Of
course, such subsets S of Mn(K) are generally not K-subspaces. Let us also give an example
of a (non-multilinear) polynomial f and an infinite field K such that f(Mn(K)) is not a
K-subspace of Mn(K).

Example 4. Let K be an algebraically closed field, n ≥ 2, and f(x) = xn. For all distinct
1 ≤ i, j ≤ n we have f(Eii) = Eii and f(Eii + Eij) = Eii + Eij, where Eij are the matrix
units. Hence the K-subspace generated by f(Mn(K)) contains all Eij, and therefore must
be Mn(K). Thus, to conclude that f(Mn(K)) is not a subspace, it suffices to show that
f(Mn(K)) 6= Mn(K). Let A ∈ Mn(K) be a nonzero nilpotent matrix. Since 0 is the only
eigenvalue of A, the Jordan canonical form of A must be strictly upper-triangular, from
which it follows that An = 0. Thus, if A = f(B) = Bn for some B ∈ Mn(K), then B must
be nilpotent, and hence f(B) = Bn = 0 (by the above argument), contradicting A 6= 0.
Therefore, f(Mn(K)) contains no nonzero nilpotent matrices, and hence f(Mn(K)) is not a
subspace of Mn(K). �

We conclude the Introduction by mentioning that there has been interest in generalizing
Theorem 1 in other directions, particularly, in determining whether the same statement
holds over an arbitrary (unital) ring. That is, given a ring R, can every matrix M ∈Mn(R)
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having trace 0 be expressed as a commutator M = AB − BA, for some A,B ∈ Mn(R)?
Intriguingly, this question remained open until 2000, when Rosset and Rosset [11] produced
a ring R and a matrix M ∈M2(R) having trace 0 that cannot be expressed as a commutator.
On the other hand, it turns out that over any unital ring R and for any n ≥ 2, every matrix
M ∈Mn(R) having trace 0 can be expressed as a sum of two commutators (see [9, Theorem
15]). To the best of our knowledge, however, there is still no classification of the rings R with
the property that every matrix with trace 0 is a commutator in Mn(R), despite continued
attention to the question.

2 Preliminaries

Let us next define multilinear polynomials more rigorously, and then collect some basic
facts about them.

Definition 5. Given a field K and a positive integer m, we denote by K〈x1, . . . , xm〉
the K-algebra freely generated by the (non-commuting) variables x1, . . . , xm. A polynomial
f(x1, . . . , xm) ∈ K〈x1, . . . , xm〉 is said to be multilinear (of degree m) if it is of the form

f(x1, . . . , xm) =
∑
σ∈Sm

aσxσ(1)xσ(2) . . . xσ(m),

where Sm is the group of all permutations of {1, . . . ,m} and aσ ∈ K.

Some authors call these polynomials homogeneous multilinear. The motivation for calling
such polynomials “multilinear” is that given any K-algebra A, any element f(x1, . . . , xm) ∈
K〈x1, . . . , xm〉 can be viewed as a map f : A×· · ·×A→ A by evaluating the xi on elements
of A, and it is easy to see that the polynomials of the above form are precisely the ones that
give rise to maps f : A× · · · × A→ A that are linear in each variable (for every K-algebra
A). That is, maps f such that for all a, b ∈ K, j ∈ {1, . . . ,m}, and r1, . . . , rm, r

′
j ∈ A, we

have
f(r1, . . . , rj−1, arj + br′j, rj+1, . . . , rm)

= af(r1, . . . , rj−1, rj, rj+1, . . . , rm) + bf(r1, . . . , rj−1, r
′
j, rj+1, . . . , rm).

Given a polynomial f(x1, . . . , xm) ∈ K〈x1, . . . , xm〉 and K-algebra A, we set f(A) =
{f(r1, . . . , rm) | r1, . . . , rm ∈ A}. Also, for any associative ring R we shall denote by [r, p]
the commutator rp− pr of r, p ∈ R, denote by [R,R] the additive subgroup of R generated
by the commutators, and let [r, R] = {[r, p] | p ∈ R} for r ∈ R.

In the next lemma we record a couple of basic facts about multilinear polynomials for
later reference. Both claims follow immediately from Definition 5.

Lemma 6. Let K be a field, A a K-algebra, m a positive integer, and f(x1, . . . , xm) ∈
K〈x1, . . . , xm〉 a multilinear polynomial. Also, let r1, . . . , rm ∈ A be arbitrary elements.
Then the following hold.

(1) For any a ∈ K we have af(r1, . . . , rm) = f(ar1, . . . , rm).

(2) For any invertible p ∈ A we have pf(r1, . . . , rm)p−1 = f(pr1p
−1, . . . , prmp

−1).
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The next lemma, which is an easy consequence of Theorem 1, describes the sets of values
of multilinear polynomials of degree at most 2 on matrix algebras.

Lemma 7. Let K be a field, m a positive integer, and f(x1, . . . , xm) ∈ K〈x1, . . . , xm〉 a
multilinear polynomial.

(1) If m = 1, then f(Mn(K)) ∈ {0,Mn(K)}.

(2) If m = 2, then f(Mn(K)) ∈ {0, [Mn(K),Mn(K)],Mn(K)}.

Proof. If m = 1, then f must be of the form f(x) = ax for some a ∈ K, from which (1)
follows.

If m = 2, then f must be of the form f(x, y) = axy+ byx for some a, b ∈ K. If a+ b 6= 0,
then f(In, Y ) = (a + b)Y for all Y ∈ Mn(K), which implies that f(Mn(K)) = Mn(K).
While, if a + b = 0, then f(x, y) = a(xy − yx), which has the same image as the polynomial
xy− yx, as long as a 6= 0, by Lemma 6(1). Statement (2) now follows from Corollary 2.

The following fact will be useful in subsequent arguments. For a polynomial f(x1, . . . , xm)
in K〈x1, . . . , xm〉 and an integer 1 ≤ l ≤ m we view f(x1, . . . , xl, 1, . . . , 1) as a polynomial in
K〈x1, . . . , xl〉.

Corollary 8. Let K be a field, m a positive integer, and

f(x1, . . . , xm) =
∑
σ∈Sm

aσxσ(1)xσ(2) . . . xσ(m) ∈ K〈x1, . . . , xm〉

a multilinear polynomial.

(1) If
∑

σ∈Sm
aσ 6= 0, then f(Mn(K)) = Mn(K).

(2) If m ≥ 2 and f(x1, x2, 1, . . . , 1) 6= 0, then f(Mn(K)) ∈ {[Mn(K),Mn(K)],Mn(K)}.

Proof. This follows from Lemma 7 upon noting that f(x1, 1, . . . , 1) = (
∑

σ∈Sm
aσ)x1, and

f(x1, x2, 1, . . . , 1) = bx1x2 + cx2x1, for some b, c ∈ K.

3 A conjecture

The main goal of this section is to justify a conjecture regarding the sets of values of
certain multilinear polynomials. We shall first require the following result of Amitsur and
Rowen [2, Proposition 1.8] to prove a fact about the linear spans of the images of our
polynomials.

Proposition 9 (Amitsur/Rowen). Let D be a division ring, n ≥ 2 an integer, and A ∈
Mn(D). Then A is similar to a matrix in Mn(D) with at most one nonzero entry on the
main diagonal. In particular, if A has trace zero, then it is similar to a matrix in Mn(D)
with only zeros on the main diagonal.

Proposition 10. Let K be a field, n ≥ 2 and m ≥ 1 integers, and f(x1, . . . , xm) a nonzero
multilinear polynomial in K〈x1, . . . , xm〉. If n ≥ m− 1, then the K-subspace 〈f(Mn(K))〉 of
Mn(K) generated by f(Mn(K)) contains [Mn(K),Mn(K)].
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Proof. Write

f(x1, . . . , xm) =
∑
σ∈Sm

aσxσ(1)xσ(2) . . . xσ(m),

for some aσ ∈ K. Since f is nonzero, upon relabeling the variables if necessary, we may as-
sume that a1 6= 0. Furthermore, by Lemma 7, if m ≤ 2, then [Mn(K),Mn(K)] ⊆ f(Mn(K))
for any n ≥ 2. We therefore may assume that m ≥ 3.

Let i, j ∈ {1, . . . , n} be distinct. Since n ≥ m − 1 ≥ 2, we can find distinct elements
l1, . . . , lm−3 ∈ {1, . . . , n} \ {i, j}. Letting Ekl denote the matrix units, we then have

f(Eii, Eij, Ejl1 , El1l2 , . . . , Elm−4lm−3 , Elm−3j)

= a1EiiEijEjl1El1l2 . . . Elm−4lm−3Elm−3j + 0 = a1Eij,

since multiplying Eii, Eij, Ejl1 , El1l2 , . . . , Elm−4lm−3 , Elm−3j in any other order yields 0. (If
m = 3, then we interpret the above equation as f(Eii, Eij, Ejj) = a1Eij.) Therefore, Eij ∈
f(Mn(K)) for all distinct i and j, and hence 〈f(Mn(K))〉 contains all matrices with zeros
on the main diagonal. Now, Lemma 6 implies that 〈f(Mn(K))〉 is closed under conjugation.
Hence, by Proposition 9, we have [Mn(K),Mn(K)] ⊆ 〈f(Mn(K))〉.

The claim in the above proposition does not in general hold when n < m−1. For example,
it is known that the set of values of the polynomial (xy− yx)2 on M2(K) is contained in the
center K · I2 (see [7]). The same is true of the linearization

f(x1, x2, y1, y2) = [x1, y1][x2, y2] + [x1, y2][x2, y1] + [x2, y1][x1, y2] + [x2, y2][x1, y1]

of this polynomial. Thus, 〈f(M2(K))〉 = K · I2 6⊇ [M2(K),M2(K)].
An affirmative answer to Question 3 would imply that in the above proposition, if n ≥

m − 1, then f(Mn(K)), and not just 〈f(Mn(K))〉, contains [Mn(K),Mn(K)]. Since it is
suspected that the question does have an affirmative answer (e.g., see [6]), we make the
following conjecture.

Conjecture 11. Let K be a field, n ≥ 2 and m ≥ 1 integers, and f(x1, . . . , xm) a nonzero
multilinear polynomial in K〈x1, . . . , xm〉. If n ≥ m− 1, then f(Mn(K)) ⊇ [Mn(K),Mn(K)].

Lemma 7 shows that this conjecture holds for m < 3. In the next section we shall show
that it holds for m = 3 as well, if K has at least n elements.

4 The three-variable case

We shall require another fact proved by Amitsur and Rowen [2, Lemma 1.2].

Lemma 12 (Amitsur/Rowen). Let K be a field and n ≥ 2 an integer. Suppose that A =
(aij) ∈ Mn(K) is a diagonal matrix with aii 6= ajj for i 6= j. Then [A,Mn(K)] consists of
all the matrices with only zeros on the main diagonal.

We are now ready for our main result.
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Theorem 13. Let n ≥ 2 be an integer, K a field with at least n elements, and f ∈ K〈x, y, z〉
any nonzero multilinear polynomial. Then f(Mn(K)) contains every matrix having trace 0.

Proof. If f has degree at most 2, then this follows from Lemma 7. Thus, let us assume that
the degree of f is 3. We can then write

f(x, y, z) = axyz + bxzy + cyxz + dyzx + ezxy + gzyx (a, b, c, d, e, g ∈ K).

If a + b + c + d + e + g 6= 0, then [Mn(K),Mn(K)] ⊆ f(Mn(K)), Corollary 8(1). Let us
therefore suppose that a + b + c + d + e + g = 0. In this case

f(x, y, z) = a(xyz − zyx) + b(xzy − zyx) + c(yxz − zyx) + d(yzx− zyx) + e(zxy − zyx).

Moreover, if any of f(1, y, z), f(x, 1, z), or f(x, y, 1) are nonzero, then by Corollary 8(2),
[Mn(K),Mn(K)] ⊆ f(Mn(K)). Thus, let us assume that

0 = f(1, y, z) = a(yz − zy) + c(yz − zy) + d(yz − zy) = (a + c + d)(yz − zy),

which implies that 0 = a + c + d. Setting 0 = f(x, 1, z) and 0 = f(x, y, 1) we similarly get
0 = a+ b+ c and 0 = a+ b+ e. Solving the resulting system of equations gives b = d, c = e,
and a = −b− c. Therefore,

f(x, y, z) = (−b− c)(xyz − zyx) + b(xzy − zyx + yzx− zyx) + c(yxz − zyx + zxy − zyx)

= b(xzy − zyx + yzx− xyz) + c(yxz − zyx + zxy − xyz)

= b(x[z, y]− [z, y]x) + c(z[x, y]− [x, y]z) = b[x, [z, y]] + c[z, [x, y]].

Now, since f(x, y, z) 6= 0, renaming the variables, if necessary, we may assume that b 6= 0.
Then, by Lemma 6(1), f(x, y, z) and b−1f(x, y, z) have the same set of values. Therefore,
we may assume that f(x, y, z) = [x, [z, y]] + b[z, [x, y]] for some b ∈ K.

Let A ∈ Mn(K) be a matrix having trace 0. We wish to show that A ∈ f(Mn(K)). By
Proposition 9, A is conjugate to a matrix A′ ∈Mn(K) with only zeros on the main diagonal.
Hence, by Lemma 6(2), to conclude the proof it is enough to show that that A′ ∈ f(Mn(K)).
By our assumption on K, we can find a diagonal matrix M ∈Mn(K) with distinct elements
of K on its main diagonal. By Lemma 12, there is some B ∈Mn(K) such that A′ = [M,B].
Now, write B = C + D, where C has only zeros on the main diagonal and D is diagonal.
Then

A′ = [M,B] = [M,C + D] = [M,C] + [M,D] = [M,C],

since M commutes with all diagonal matrices. Using Lemma 12 once again, we can find a
matrix E ∈Mn(K) such that C = [E,M ]. Finally, we have

f(M,M,E) = [M, [E,M ]] + b[E, [M,M ]] = [M, [E,M ]] = [M,C] = A′,

as desired.

Let us next describe the degree-three multilinear polynomials f satisfying f(Mn(K)) =
[Mn(K),Mn(K)].
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Lemma 14. Let n ≥ 2 be an integer, K a field, and

f(x1, x2, x3) =
∑
σ∈S3

aσxσ(1)xσ(2)xσ(3) ∈ K〈x1, x2, x3〉

a multilinear polynomial of degree 3. Then f(Mn(K)) ⊆ [Mn(K),Mn(K)] if and only if∑
σ∈S3

aσ = 0 =
∑

σ∈A3
aσ, where A3 ⊆ S3 is the alternating subgroup.

Proof. By Corollary 8(1), we may assume that
∑

σ∈S3
aσ = 0. Now, suppose that

∑
σ∈A3

aσ =
0. Then we must also have

∑
σ∈S3\A3

aσ =
∑

σ∈S3
aσ −

∑
σ∈A3

aσ = 0. Therefore,

f(x1, x2, x3) =
∑
σ∈A3

aσxσ(1)xσ(2)xσ(3) +
∑

σ∈S3\A3

aσxσ(1)xσ(2)xσ(3)

=
∑

σ∈A3\{1}

aσ(xσ(1)xσ(2)xσ(3) − x1x2x3) +
∑

σ∈S3\(A3∪{(12)})

aσ(xσ(1)xσ(2)xσ(3) − x2x1x3)

= a(123)(x2x3x1 − x1x2x3) + a(132)(x3x1x2 − x1x2x3)

+a(13)(x3x2x1 − x2x1x3) + a(23)(x1x3x2 − x2x1x3)

= a(123)[x2x3, x1] + a(132)[x3, x1x2] + a(13)[x3, x2x1] + a(23)[x1x3, x2].

Thus, f(Mn(K)) ⊆ [Mn(K),Mn(K)].
On the other hand, f(E11, E12, E21) = a1E11 + a(123)E11 + a(132)E22 has trace

∑
σ∈A3

aσ.
Hence, if this sum is not zero, then f(Mn(K)) 6⊆ [Mn(K),Mn(K)].

Applying Theorem 13 to this lemma we obtain the following.

Corollary 15. Let n ≥ 2 be an integer, K a field with at least n elements, and

f(x1, x2, x3) =
∑
σ∈S3

aσxσ(1)xσ(2)xσ(3) ∈ K〈x1, x2, x3〉

a nonzero multilinear polynomial of degree 3. Then f(Mn(K)) = [Mn(K),Mn(K)] if and
only if

∑
σ∈S3

aσ = 0 =
∑

σ∈A3
aσ, where A3 ⊆ S3 is the alternating subgroup.

We note that in general the condition
∑

σ∈Sm
aσ = 0 =

∑
σ∈Am

aσ does not characterize
the nonzero multilinear polynomials f(x1, . . . , xm) satisfying f(Mn(K)) = [Mn(K),Mn(K)].
For example, if m = 2, then

∑
σ∈Sm

aσ = 0 =
∑

σ∈Am
aσ implies that f(x1, x2) = 0. Also,

f(x1, x2, x3, x4) = x1x2x3x4−x4x3x2x1 satisfies
∑

σ∈S4
aσ = 0 =

∑
σ∈A4

aσ, but f(Mn(K)) 6⊆
[Mn(K),Mn(K)] for any n ≥ 2, since f(E11, E12, E22, E21) = E11 /∈ [Mn(K),Mn(K)].

Let us conclude with a fact about the image of the degree-three multilinear polynomial
[x, [y, z]] on matrices over an arbitrary ring. We first require the following lemma.

Lemma 16. Let R be a unital ring, let n ≥ 2 be an integer, and let A = (aij) ∈ Mn(R) be
such that for each j ∈ {0, 1, . . . , n− 1} we have

∑n−j
i=1 ai,i+j = 0 (i.e., sums of the elements

along the diagonals above and including the main diagonal are 0). Then A = DX −XD for
some D ∈Mn(R) and X =

∑n−1
i=1 Ei+1,i, where Eij are the matrix units.
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Proof. Letting Z =
∑n−1

i=1 Ei,i+1 we have ZX =
∑n−1

i=1 Eii = I−Enn. For any l ∈ {0, 1, . . . , n−
1} and k ∈ {1, 2, . . . , n} we then have

EkkX
lAZ lEnn = Ekk

( n−l∑
i=1

Ei+l,i

)
A

( n−l∑
i=1

Ei,i+l

)
Enn = Ek,k−lAEn−l,n = ak−l,n−lEkn

if l < k, and EkkX
lAZ lEnn = 0 · AZ lEnn = 0 if l ≥ k.

Letting D =
∑n−2

i=0 X iAZi+1, we have

DX −XD =

( n−2∑
i=0

X iAZi

)
ZX −

n−2∑
i=0

X i+1AZi+1

=

(
A +

n−2∑
i=1

X iAZi

)
(I − Enn)−

n−1∑
i=1

X iAZi = A−
( n−2∑

i=0

X iAZi

)
Enn −Xn−1AZn−1

= A−
( n−2∑

i=0

X iAZi

)
Enn −Xn−1AE1n = A−

( n−1∑
i=0

X iAZi

)
Enn.

Now, for every k ∈ {1, 2, . . . , n} we have

Ekk

( n−1∑
i=0

X iAZi

)
Enn =

k−1∑
i=0

EkkX
iAZiEnn =

( k−1∑
i=0

ak−i,n−i

)
Ekn =

( k∑
i=1

ai,i+(n−k)

)
Ekn,

by the computation in the first paragraph. Finally, the last sum is 0, by hypothesis on A,
and hence (

∑n−1
i=0 X iAZi)Enn = 0, showing that DX −XD = A.

Theorem 17. Let R be a unital ring, let n ≥ 2 be an integer, let f(x, y, z) = [x, [z, y]], and
let A = (aij) ∈ Mn(R) be such that for each j ∈ {0, 1, . . . , n − 1} we have

∑n−j
i=1 ai,i+j = 0.

Then A = f(D,X, Y ) for some D ∈Mn(R), X =
∑n−1

i=1 Ei+1,i, and Y =
∑n

i=1(i− 1)Eii.

Proof. For any matrix M = (mij) ∈Mn(K) we have

[Y,M ] =


0 0 0 . . . 0

m21 m22 m23 . . . m2n

2m31 2m32 2m33 . . . 2m3n
...

...
...

. . .
...

−


0 m12 2m13 . . . (n− 1)m1n

0 m22 2m23 . . . (n− 1)m2n

0 m32 2m33 . . . (n− 1)m3n
...

...
...

. . .
...


= ((i− 1)mij)− ((j − 1)mij) = ((i− j)mij).

Hence, in particular, [Y,X] = X.
Now, by Lemma 16, A = [D,X] for some D ∈Mn(R). We therefore have

f(D,X, Y ) = [D, [Y,X]] = [D,X] = A,

proving the statement.

This argument extends easily to all polynomials of the form [x1, [x2, . . . , [xm−1, xm]] . . . ].
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