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Abstract

From any directed graph E one can construct the graph inverse semigroup G(E),
whose elements, roughly speaking, correspond to paths in E. Wang and Luo showed
that the congruence lattice L(G(E)) of G(E) is upper-semimodular for every graph
E, but can fail to be lower-semimodular for some E. We provide a simple character-
isation of the graphs E for which L(G(E)) is lower-semimodular. We also describe
those E such that L(G(E)) is atomistic, and characterise the minimal generating
sets for L(G(E)) when E is finite and simple.
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1 Introduction

Roughly speaking, a graph inverse semigroup G(E) is an inverse semigroup with zero,
whose non-zero elements are paths in a (directed) graph E, and where the operation is
concatenation of those paths or zero, depending on whether one path ends at the vertex
where the next path begins. A precise definition is given in the next section. Graph
inverse semigroups were introduced by Ash and Hall [2], who characterised those graph
inverse semigroups that are congruence-free, and showed that every partial order is the
partial order of the non-zero J -classes of a graph inverse semigroup. These semigroups
also generalise the so-called polycyclic monoids of Nivat and Perrot [10], and arise in the
study of Leavitt path algebras [1] and graph C∗-algebras [11].

There has been a number of more recent papers specifically about graph inverse semi-
groups; see, for example, [8] and references therein. Of particular relevance here are the
papers of Wang [12]; Luo and Wang [6]; and Luo, Wang, and Wei [7]. In [12], Wang gives a
description of the congruences of a graph inverse semigroup G(E) in terms of certain sets
of vertices of the graph E and integer-valued functions on the cycles in E. This character-
isation is used to show that the lattice L(G(E)) of any graph inverse semigroup G(E) is
Noetherian, i.e., G(E) does not have any infinite strictly ascending chains of congruences.
In [6], Luo and Wang show that L(G(E)) is always upper-semimodular (Proposition 2.2),
but not lower-semimodular in general. These results follow a long tradition of studying
lattices naturally associated to various algebraic objects. For one example, among many
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Figure 1: Every connected simple graph E with 4 vertices, such that L(G(E)) is lower-
semimodular, together with the corresponding lattice L(G(E)).

others, it is well-known that the lattice of normal subgroups of a group is modular but not
distributive in general. Even if we restrict our attention to the lattices of congruences of
semigroups, the literature is rich; see, for example, [3].

The upper-semimodularity result of Luo and Wang [6] naturally raises the follow-
ing question: is it possible to characterise those graphs E for which L(G(E)) is lower-
semimodular? We answer this question in Theorem 2.3 for arbitrary graphs E, and pro-
vide a somewhat simpler characterisation for finite simple graphs in Corollary 2.4. We
also completely describe those graphs E such that L(G(E)) is atomistic (Theorem 2.5),
and characterise the minimal generating sets for L(G(E)) (Theorem 2.7), when E is finite
and simple. The results in this paper were initially suggested by experiments performed
using the Semigroups package [9] for GAP [4]. For example, every connected simple graph
E with 4 vertices, up to isomorphism, such that L(G(E)) is lower-semimodular, is shown
in Fig. 1.

2 Definitions and statements of main results

2.1 Graphs

A (directed) graph E = (E0, E1, s, r) is a quadruple consisting of two sets, E0 and E1,
and two functions s, r : E1 −→ E0, called source and range, respectively. The elements of
E0 and E1 are referred to as vertices and edges, respectively. A vertex v ∈ E0 satisfying
s−1(v) = ∅ is called a sink. A sequence p = e1e2 · · · en of (not necessarily distinct) edges
ei ∈ E1, such that r(ei) = s(ei+1) for 1 ≤ i ≤ n − 1, is a path from s(e1) to r(en). Here
we set s(p) = s(e1) and r(p) = r(en), and refer to n as the length of p. We view the

2



elements of E0 as paths of length 0, and denote by Path(E) the set of all paths in E. A
path p = e1 · · · en where n ≥ 1, s(p) = r(p), and s(ei) ̸= s(ej) for all i ̸= j, is a cycle.
Two distinct edges e, f ∈ E1, such that s(e) = s(f) and r(e) = r(f), are called parallel. A
graph containing no cycles is called acyclic, while an acyclic graph without parallel edges
is called simple. A graph E is finite if both E0 and E1 are finite.

Given a graph E and vertices u, v ∈ E0, we write u > v if u ̸= v and there is a path
p ∈ Path(E) such that s(p) = u and r(p) = v. It is easy to see that ≥, defined in the
obvious way from >, is a preorder on E0. Next, let H be a subset of E0. Then H is
downward directed if it is non-empty, and for all u, v ∈ H there exists w ∈ H such that
u ≥ w and v ≥ w. We say that H is hereditary if u ≥ v implies that v ∈ H, for all u ∈ H
and v ∈ E0. Supposing that H is non-empty, H is called a strongly connected component if
u ≥ v for all u, v ∈ H, and H is maximal with respect to this property. If H is non-empty
and hereditary, then being a strongly connected component amounts to satisfying u ≥ v
for all u, v ∈ H. Finally, we denote by E \H the subgraph of E induced by H. Specifically,
(E \H)0 = E0 \H,

(E \H)1 = E1 \ {e ∈ E1 | s(e) ∈ H or r(e) ∈ H},

and the source and range functions, sE\H and rE\H , are the restrictions of s and r, respec-
tively, to (E \H)1.

2.2 Inverse semigroups

Let S be a semigroup, i.e., a set with an associative binary operation. We say that S is an
inverse semigroup, if for every x ∈ S there exists a unique x−1 ∈ S satisfying xx−1x = x
and x−1xx−1 = x−1.

Given a graph E, we define the graph inverse semigroup G(E) of E to be the semigroup
with zero generated by E0, E1, and E−1 = {e−1 | e ∈ E1} that satisfies the following
relations, for all u, v ∈ E0 and e, f ∈ E1:

(E1) s(e)e = er(e) = e,

(E3) e−1f =

{
r(e) if e = f

0 if e ̸= f,

(E2) r(e)e−1 = e−1s(e) = e−1,

(V) vu =

{
v if v = u

0 if v ̸= u.

For every v ∈ E0 we define v−1 = v, and for every q = e1 · · · en ∈ Path(E) we define
q−1 = e−1

n · · · e−1
1 . It follows directly from the above axioms that every non-zero element

in G(E) can be written in the form pq−1 for some p, q ∈ Path(E). It is routine to show
that G(E) is an inverse semigroup, with (pq−1)−1 = qp−1 for every non-zero pq−1 ∈ G(E).
Moreover, G(E) is finite if and only if E is finite and acyclic.

If S is any semigroup and ρ ⊆ S × S is an equivalence relation, then ρ is called
a congruence if (zx, zy), (xz, yz) ∈ ρ, for all (x, y) ∈ ρ and all z ∈ S. The diagonal
congruence is ∆S = {(x, x) | x ∈ S}, and the universal congruence is S × S. If R is any
subset of S × S, then we denote by R♯ the least congruence on S containing R; this is
called the congruence generated by R.
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Figure 2: The diamond lattice M3 and the pentagon lattice N5.

2.3 Lattices

A partially ordered set (L,≤) is a lattice, if for all a, b ∈ L there exists an infimum a ∧ b,
called the meet of a and b, and a supremum a∨b, called the join of a and b. When the order
is clear from the context we will write L instead of (L,≤). For instance, if X is any set,
then the power set P(X) of X forms a lattice under containment, where ∧ is intersection
and ∨ is union. Similarly, the collection of all congruences L(S) on a semigroup S forms
a lattice, with respect to containment, where ρ ∨ σ = (ρ ∪ σ)♯ and ρ ∧ σ = ρ ∩ σ, for all
ρ, σ ∈ L(S). By convention, the diagonal congruence ∆S on S is the join of the empty set
of congruences. A lattice L is complete if every subset K ⊆ L has an infimum

∧
K and

a supremum
∨

K. Examples of complete lattices include all finite lattices, the power set
lattice P(X) of any set X, and the lattice of congruences L(S) of any semigroup S.

Two lattices L1 and L2 are order-isomorphic if there exists a bijection Ψ : L1 −→ L2,
such that Ψ(a∨ b) = Ψ(a)∨Ψ(b) and Ψ(a∧ b) = Ψ(a)∧Ψ(b), for all a, b ∈ L1. A subset L′

of a lattice L is called a sublattice of L if it forms a lattice under the same join and meet
operations as L. We say that L is generated by a subset X if every element of L can be
expressed as a join of finitely many elements of X. In this situation, the elements of X
are called generators of L. For a, b ∈ L, we say that b covers a, and write a ≺ b, if a < b
and there is no element c ∈ L, such that a < c < b. If L is a lattice with a least element
0, then a ∈ L is an atom in case 0 ≺ a. A lattice is atomistic if it can be generated using
only atoms.

Let L be a lattice. Then L is modular if a ≤ c implies that (a∨ b)∧ c = a∨ (b∧ c), for
all a, b, c ∈ L. Moreover, L is upper-semimodular if a∧ b ≺ a, b implies that a, b ≺ a∨ b, for
all a, b ∈ L. Likewise, L is lower-semimodular if a, b ≺ a∨ b implies that a∧ b ≺ a, b, for all
a, b ∈ L. Finally, L is distributive if a∧(b∨c) = (a∧b)∨(a∧c) and a∨(b∧c) = (a∨b)∧(a∨c),
for all a, b, c ∈ L.

It is well-known that every distributive lattice is modular. Moreover, every modular
lattice is both upper- and lower-semimodular, and the converse also holds for finite lattices.
A lattice L is distributive if and only if neither the pentagon N5 nor the diamond M3,
shown in Fig. 2, is a sublattice of L. Similarly, a lattice L is modular if and only if the
pentagon N5 is not a sublattice of L. See, for example, [5] for further details.

2.4 Congruence lattices on graph inverse semigroups

Let E be a graph. Given a subset H of E0, we denote by C(H) the set of cycles c =
e1 . . . en ∈ Path(E) such that s(ei) ∈ H for each i. As defined in [6], a Wang triple

4



(H,W, f) on E consists of a hereditary set H ⊆ E0, a set

W ⊆ {v ∈ E0 \H | |s−1
E\H(v)| = 1},

and a cycle function f : C(E0) −→ Z+∪{∞} (i.e., f(c) = 1 for all c ∈ C(H), f(c) = ∞ for
all c /∈ C(H∪W ), and the restriction of f to C(W ) is invariant under cyclic permutations).
In [6], the term “congruence triple” is used for this concept.

Given a Wang triple (H,W, f) on a graph E, we define ϱ(H,W, f) to be the corre-
sponding congruence, generated by the following set:

(H × {0}) ∪ {(w, ee−1) | w ∈ W, s(e) = w, r(e) ̸∈ H}
∪{(cf(c), s(c)) | c ∈ C(W ), f(c) ∈ Z+}.

Also, given two Wang triples (H1,W1, f1) and (H2,W2, f2) on E, write (H1,W1, f1) ≤
(H2,W2, f2) if H1 ⊆ H2, W1 \H2 ⊆ W2, and f2(c) | f1(c) for all c ∈ C(E0). (Here | denotes
“divides”, and it is understood that ∞ | ∞, and n | ∞ for all n ∈ Z+.) According to [6,
Corollary 1.1] and [12, Lemma 2.18], ≤ is a partial order on the set of all Wang triples
on a graph. Moreover, Luo and Wang characterise the lattice of congruences on a graph
inverse semigroup, according to the associated Wang triples. We will repeatedly require
this characterisation, and so we state it in the next proposition.

Proposition 2.1 (Proposition 1.2 in [6]). Let E be a graph, let G(E) be the graph inverse
semigroup of E, and let L(G(E)) be the lattice of congruences on G(E). The function
(H,W, f) 7→ ϱ(H,W, f) is an order-isomorphism between the set of all Wang triples on E,
ordered by ≤, and L(G(E)), ordered by containment.

In light of this proposition, we will abuse notation by identifying Wang triples with the
corresponding congruences, writing (H,W, f) instead of ϱ(H,W, f), and (H1,W1, f1) ⊆
(H2,W2, f2) instead of (H1,W1, f1) ≤ (H2,W2, f2). If E is acyclic, then the component f
in a Wang triple (H,W, f) is redundant, and we will write (H,W,∅) instead.

Next, we record another frequently used result, mentioned in the introduction.

Proposition 2.2 (Theorem 1.3 in [6]). Let E be a graph, let G(E) be the graph inverse
semigroup of E, and let L(G(E)) be the lattice of congruences on G(E). Then L(G(E)) is
upper-semimodular.

In [6, Example 2] Luo and Wang produce a graph E such that L(G(E)) is not lower-
semimodular. For another example, if E is the graph in Fig. 3, then it can be shown using
the Semigroups package [9] for GAP [4], that L(G(E)) is isomorphic to the lattice in Fig. 3,
which is easily seen to not be lower-semimodular.

2.5 Main results

To state our first main theorem, which characterises those graphs E such that the con-
gruence lattice L(G(E)) of the corresponding graph inverse semigroup G(E) is lower-
semimodular, we require the following definition. Let E be a graph and v ∈ E0. We refer
to v as a forked vertex, if there exist distinct edges e, f ∈ s−1(v) such that the following
properties hold:

(i) r(g) ̸≥ r(e) for all g ∈ s−1(v) \ {e};
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Figure 3: A graph E, together with L(G(E)), which is not lower-semimodular. The vertices
of L(G(E)) shown in orange are covered by their join, shown in blue, but they do not cover
their meet, shown in purple.

(ii) r(g) ̸≥ r(f) for all g ∈ s−1(v) \ {f}.

Theorem 2.3. Let E be a graph, let G(E) be the graph inverse semigroup of E, and let
L(G(E)) be the lattice of congruences on G(E). Then E has no forked vertices if and only
if L(G(E)) is lower-semimodular.

Theorem 2.3 has a somewhat simpler form when restricted to finite simple graphs, in
which case additional characterisations can be given.

Corollary 2.4. Let E be a finite acyclic graph, let G(E) be the graph inverse semigroup
of E, and let L(G(E)) be the lattice of congruences of G(E). Then the following are
equivalent:

(i) L(G(E)) is lower-semimodular;

(ii) L(G(E)) is modular;

(iii) L(G(E)) is distributive.

If E is simple, then these conditions are also equivalent to the following:

(iv) r(e) ≥ r(f) or r(f) ≥ r(e) for all e, f ∈ E1 such that s(e) = s(f).

In the next of our main theorems, we characterise those graphs E such that L(G(E))
is atomistic.

Theorem 2.5. Let E be a graph, let G(E) be the graph inverse semigroup of E, and let
L(G(E)) be the lattice of congruences of G(E). Then every congruence in L(G(E)) is the
join of a (possibly infinite) collection of atoms if and only if for every v ∈ E0 one of the
following holds:

(i) |s−1(v)| = 0;

(ii) |s−1(v)| = 1, v does not belong to a cycle, and v > u for some u ∈ E0 such that
|s−1(u)| ≠ 1;

(iii) |s−1(v)| ≥ 2, and r(e) ≥ v for all e ∈ s−1(v).
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Figure 4: An example of a graph satisfying the conditions of Theorem 2.5.

Moreover, L(G(E)) is atomistic if and only if, in addition to the above conditions on all
vertices, E0 has only finitely many strongly connected components and vertices v such that
|s−1(v)| = 1.

An example of a graph satisfying the conditions of Theorem 2.5 is given in Fig. 4.
The conditions of Theorem 2.5 simplify significantly when the graph is finite and acyclic.

Corollary 2.6. Let E be a finite acyclic graph, let G(E) be the graph inverse semigroup
of E, and let L(G(E)) be the lattice of congruences of G(E). Then the following are
equivalent:

(i) |s−1(v)| ≤ 1 for all v ∈ E0;

(ii) L(G(E)) is isomorphic to the power set lattice P(E0);

(iii) L(G(E)) is atomistic.

For graphs E such thatG(E) is infinite, L(G(E)) being isomorphic to P(E0) is generally
not equivalent to L(G(E)) being atomistic. For example, if |E0| = ℵ0, then the number of
atoms in L(G(E)) is at most ℵ0 (this follows from Proposition 5.1 and Proposition 2.1),
and so the cardinality of the lattice generated by atoms is at most ℵ0 also. On the other
hand, |P(E0)| = 2ℵ0 > ℵ0. Hence L(G(E)) is not atomistic if it is isomorphic to P(E0).

The last of our main theorems establishes a generating set for L(G(E)) in terms of the
graph E, when it is finite and simple.

Theorem 2.7. Let E be a finite simple graph, let G(E) be the graph inverse semigroup
of E, let L(G(E)) be the lattice of congruences on G(E), and let A ⊆ L(G(E)). Then A
generates L(G(E)) if and only if A contains all the congruences of the following types:

(i) ({v},∅,∅), such that v ∈ E0 and |s−1(v)| = 0;

(ii) (H, {v},∅), such that v ∈ E0, |s−1(v)| > 0, and H is a minimal (with respect con-
tainment) hereditary subset of E0 satisfying |s−1

E\H(v)| = 1.

The statement in Theorem 2.7 does not hold for graphs with parallel edges. For ex-
ample, if E is the graph given in Fig. 5, then the only congruences on G(E) of types (i)
and (ii) in Theorem 2.7 are of the form ({v},∅,∅), where v ∈ E0 and |s−1(v)| = 0. It
follows (using Proposition 3.1) that the congruence (E0,∅,∅) on G(E) is not a join of
congruences of types (i) and (ii).
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Figure 5: A graph E with parallel edges, for which the conclusion of Theorem 2.7 does not
hold.

3 Meets, joins, and covers

In this section, we describe the circumstances under which one congruence covers another
in a graph inverse semigroup, in terms of Wang triples. This fact will be used repeatedly
in the paper.

We begin by stating a result from [6] that describes the meets and joins of Wang triples,
for convenience of reference.

Proposition 3.1 (Lemmas 2.7 and 2.8 in [6]). Let E be a graph, let (H1,W1, f1) and
(H2,W2, f2) be Wang triples on E, and set

V0 = {v ∈ (W1 ∪W2) \ (H1 ∪H2) | s−1
E\(H1∪H2)

(v) = ∅}

and

J = {v ∈ (W1 ∪W2) \ (H1 ∪H2) | ∃e1 · · · en ∈ Path(E) ∀i ∈ {2, . . . , n}
(s(e1) = v, r(en) ∈ V0, s(ei) ∈ W1 ∪W2)}.

Then

(H1,W1, f1)∧(H2,W2, f2) = (H1∩H2, (W1∩H2)∪(W2∩H1)∪((W1∩W2)\V0), lcm(f1, f2)),

where lcm(f1, f2)(c) = lcm(f1(c), f2(c)) for all c ∈ C(E0), and

(H1,W1, f1) ∨ (H2,W2, f2) = (H1 ∪H2 ∪ J, (W1 ∪W2) \ (H1 ∪H2 ∪ J), gcd(f1, f2)),

where gcd(f1, f2)(c) = gcd(f1(c), f2(c)) for all c ∈ C(E0).

Next, we characterise the situations where one Wang triple covers another.

Proposition 3.2. Let E be a graph, and let (H1,W1, f1) and (H2,W2, f2) be Wang triples
on E, such that (H1,W1, f1) ⊊ (H2,W2, f2). Then (H1,W1, f1) ≺ (H2,W2, f2), i.e.,
(H2,W2, f2) covers (H1,W1, f1), if and only if one of the following holds:

(i) H1 = H2, W1 = W2, and f2 ≺ f1. (I.e., there is a cycle c ∈ C(W1) such that
f1(c)/f2(c) is a prime integer, and f1(d) = f2(d) for all d ∈ C(W1) \ {c}.)

(ii) H1 = H2, |W2 \W1| = 1, and f1 = f2.

(iii) H1 ⊊ H2, W1 \H2 = W2,

W1 ∩H2 = {v ∈ H2 \H1 | |s−1
E\H1

(v)| = 1},

f1(c) = f2(c) for all c ∈ C(W1), and for each hereditary set H1 ⊊ H ′ ⊊ H2 there
exists v ∈ W1 \H ′ such that r(e) ∈ H ′ for all e ∈ s−1(v).
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Moreover, if (iii) holds, then H2 \H1 is downward directed.

Proof. If (i) holds, then (H1,W1, f1) ≺ (H2,W2, f2), by [6, Lemma 2.4]. If (ii) holds, then
it follows immediately from the definition of the ordering on Wang triples (or [6, Lemma
2.3]) that (H1,W1, f1) ≺ (H2,W2, f2). Let us now suppose that (iii) holds and that

(H1,W1, f1) ⊆ (H ′,W ′, f ′) ⊆ (H2,W2, f2)

for some Wang triple (H ′,W ′, f ′). We will show that either (H ′,W ′, f ′) = (H1,W1, f1) or
(H ′,W ′, f ′) = (H2,W2, f2). Notice that necessarily f1(c) = f ′(c) = f2(c) for all c ∈ C(W1).

Suppose that H1 ⊊ H ′ ⊊ H2. Then, by hypothesis, there exists v ∈ W1 \H ′ such that
r(e) ∈ H ′ for all e ∈ s−1(v). Thus v ∈ W1 \ (H ′ ∪W ′), which contradicts (H1,W1, f1) ⊆
(H ′,W ′, f ′). It follows that either H ′ = H1 or H ′ = H2. In the first case, H ′ = H1,

W1 = W1 \H1 = W1 \H ′ ⊆ W ′,

which implies that W1 \ H2 = W ′ \ H2 = W2. Since, by hypothesis, W1 contains all v ∈
H2 \H1 such that |s−1

E\H1
(v)| = 1, we see that W1 = W ′, and so (H ′,W ′, f ′) = (H1,W1, f1).

In the second case, H ′ = H2,

W ′ = W ′ \H ′ = W ′ \H2 ⊆ W2 = W1 \H2 = W1 \H ′ ⊆ W ′,

which implies that W ′ = W2. Since W2 ⊆ W1, it follows that f
′ = f2, and so (H ′,W ′, f ′) =

(H2,W2, f2), as desired.
For the converse, suppose that (H1,W1, f1) ≺ (H2,W2, f2). Let us also suppose, for the

moment, that H1 = H2. If W1 = W2, then f2 ≺ f1, by [6, Lemma 2.4]. If W1 ⊊ W2, then
|W2 \W1| = 1, and f1 = f2, by [6, Lemma 2.3]. Thus, if H1 = H2, then exactly one of (i)
or (ii) must hold. Let us now assume that H1 ⊊ H2. Then W1 \H2 = W2,

W1 ∩H2 = {v ∈ H2 \H1 | |s−1
E\H1

(v)| = 1},

and f1(c) = f2(c) for all c ∈ C(W1), by [6, Lemma 2.1]. Therefore to conclude the proof
of the main claim, it suffices to take a hereditary set H1 ⊊ H ′ ⊊ H2 and show that there
exists v ∈ W1 \H ′ such that r(e) ∈ H ′ for all e ∈ s−1(v).

Suppose, on the contrary, that |s−1
E\H′(v)| = 1 for all v ∈ W1 \H ′. Let W ′ = W1 \H ′,

and let f ′ : C(E0) −→ Z+ ∪ {∞} be the cycle function such that f1(c) = f ′(c) for all
c ∈ C(W ′) and f ′(c) = 1 for all c ∈ C(H ′). Then (H ′,W ′, f ′) is a Wang triple such that

(H1,W1, f1) ⊊ (H ′,W ′, f ′) ⊊ (H2,W2, f2),

contradicting our hypothesis. Therefore there must exist v ∈ W1 \H ′ such that r(e) ∈ H ′

for all e ∈ s−1(v).
For the final claim, suppose that (iii) holds, and let u, v ∈ H2 \H1. Now suppose that

for all w ∈ H2 \H1 either u ̸≥ w or v ̸≥ w. Let G1 = H1 ∪ {x ∈ E0 | u ≥ x}, and for each
i > 1 let

Gi = Gi−1 ∪ {x ∈ W1 \Gi−1 | r(s−1(x)) ⊆ Gi−1}.
Then, clearly, H ′ =

⋃∞
i=1 Gi is hereditary, H1 ⊊ H ′ ⊆ H2, and there is no x ∈ W1 \ H ′

such that r(e) ∈ H ′ for all e ∈ s−1(x). Condition (iii) then implies that H ′ = H2. Notice
also that, by hypothesis, v /∈ G1, and that if v ∈ W1, then it cannot be the case that
r(s−1(v)) ⊆ Gi−1 for some i > 1. It follows that v /∈ H ′, in contradiction to H ′ = H2.
Therefore there must exist w ∈ H2 \ H1 such that u ≥ w and v ≥ w, i.e., H2 \ H1 is
downward directed.
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If the graph E is finite and acyclic, then the conditions in Proposition 3.2 can be
simplified substantially, as the next corollary shows. Corollary 3.3 follows fairly quickly
from Proposition 3.2, but the proof is omitted because we will not use this result directly.

Corollary 3.3. Let E be a finite acyclic graph, and let (H1,W1,∅) and (H2,W2,∅) be
Wang triples on E, such that (H1,W1,∅) ⊆ (H2,W2,∅). Then (H1,W1,∅) ≺ (H2,W2,∅)
if and only if |(H2 ∪W2) \ (H1 ∪W1)| = 1.

4 Modularity

In this section we will prove Theorem 2.3 and Corollary 2.4. We begin with a sequence of
lemmas that will culminate in the proof of Theorem 2.3.

Lemma 4.1. Let E be a graph containing a forked vertex. Then L(G(E)) is not lower-
semimodular.

Proof. By hypothesis, there exist v ∈ E0 and distinct e, f ∈ s−1(v), such that r(g) ̸≥ r(e)
for all g ∈ s−1(v) \ {e}, and r(g) ̸≥ r(f) for all g ∈ s−1(v) \ {f}. Let u = r(e), w = r(f),
X = {x ∈ E0 | v ≥ x}, Hu = {x ∈ X | x ̸≥ u}, and Hw = {x ∈ X | x ̸≥ w}. Then, clearly,
X, Hu, and Hw are hereditary. Next, let

Wu = {y ∈ X \Hu | |s−1
E\Hu

(y)| = 1} and Ww = {y ∈ X \Hw | |s−1
E\Hw

(y)| = 1}.

Also, for each set H ⊆ E0 let us denote by fH : C(E0) −→ Z+ ∪ {∞} the function such
that fH(c) = 1 for all c ∈ C(H) and fH(c) = ∞ for all c ∈ C(E0 \H). Then (Hu,Wu, fu)
and (Hw,Ww, fw) are Wang triples, where fu = fHu∪Wu and fw = fHw∪Ww . Also, by
construction, v ∈ Wu and v ∈ Ww. By Proposition 3.1,

(Hu,Wu, fu) ∨ (Hw,Ww, fw) = (X,∅, fX),

since |s−1
E\(Hu∪Hw)(v)| = 0 and v ∈ (Wu ∪Ww) \ (Hu ∪ Hw). Using Proposition 3.1 again,

since v ∈ V0,
(Hu,Wu, fu) ∧ (Hw,Ww, fw) = (Hu ∩Hw,W, fuw),

for some set W such that W \Hu ⊆ Wu \ {v}, and fuw = lcm(fu, fv). Then

(Hu ∩Hw,W, fuw) ⊊ (Hu,Wu \ {v}, fHu∪(Wu\{v})) ⊊ (Hu,Wu, fu),

since w ∈ Hu \Hw implies that Hu∩Hw ⊊ Hu. Therefore, to conclude that L(G(E)) is not
lower-semimodular it suffices to show that (Hu,Wu, fu) ≺ (X,∅, fX) and (Hw,Ww, fw) ≺
(X,∅, fX). Given the symmetry of the situation, we shall only show that (Hw,Ww, fw) ≺
(X,∅, fX). By Proposition 3.2, it is enough to prove that for any hereditary set Hw ⊊
H ′ ⊊ X there exists y ∈ Ww \H ′ such that r(g) ∈ H ′ for all g ∈ s−1(y).

Suppose that Hw ⊊ H ′ ⊊ X for some hereditary set H ′, and let x ∈ H ′ \ Hw. Then
x ≥ w, and so w ∈ H ′. Hence, by construction, r(g) ∈ H ′ for all g ∈ s−1(v). Moreover
v ∈ Ww \H ′, since H ′ ̸= X, giving the desired conclusion.

Lemma 4.2. Let E be a graph with no forked vertices. Then for any pair (H1,W1, f1) and
(H2,W2, f2) of Wang triples on E, we have V0 ∩W1 ∩W2 = ∅, where V0 is the set defined
in Proposition 3.1, and

(H1,W1, f1) ∧ (H2,W2, f2) = (H1 ∩H2, (W1 ∩H2) ∪ (W2 ∩H1) ∪ (W1 ∩W2), lcm(f1, f2)).
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Proof. Suppose that there exists v ∈ V0∩W1∩W2. Since v ∈ V0, we have s
−1
E\(H1∪H2)

(v) = ∅.

Since v ∈ W1 ∩ W2, there must exist (distinct) e, f ∈ s−1(v) such that r(e) ∈ H1 \ H2,
r(f) ∈ H2 \ H1, and r(g) ∈ H1 ∩ H2 for all g ∈ s−1(v) \ {e, f}. Since H1 and H2

are hereditary, it follows that r(g) ̸≥ r(e) and r(g) ̸≥ r(f) for all g ∈ s−1(v) \ {e, f},
r(e) ̸≥ r(f), and r(f) ̸≥ r(e). That is, v ∈ E0 is forked.

Thus if E has no forked vertices, then V0∩W1∩W2 = ∅. The claim about (H1,W1, f1)∧
(H2,W2, f2) now follows from Proposition 3.1.

Lemma 4.3. Let E be a graph, and suppose that (H1,W1, f1) and (H2,W2, f2) are Wang
triples on E, such that the set J defined in Proposition 3.1 is empty, and

(H1,W1, f1) ≺ (H1,W1, f1) ∨ (H2,W2, f2).

Then
(H1,W1, f1) ∧ (H2,W2, f2) ≺ (H2,W2, f2).

Proof. By Proposition 3.1,

(H1,W1, f1) ∨ (H2,W2, f2) = (H, (W1 ∪W2) \H, gcd(f1, f2)),

where H = H1 ∪H2 ∪ J = H1 ∪H2. Since

(H1,W1, f1) ≺ (H1,W1, f1) ∨ (H2,W2, f2),

by Proposition 3.2, there are three possible cases, which we examine individually.
Case 1: H1 = H, W1 = (W1 ∪ W2) \ H, and gcd(f1, f2) ≺ f1. Then H2 ⊆ H1,

W2 \H1 ⊆ W1, and f2 ≺ lcm(f1, f2). Given that V0 ⊆ J = ∅ and W1 ∩H1 = ∅, it follows
that

(W1 ∩H2) ∪ (W2 ∩H1) ∪ ((W1 ∩W2) \ V0) = ∅ ∪ (W2 ∩H1) ∪ (W1 ∩W2) = W2.

Therefore, by Proposition 3.1 and Proposition 3.2,

(H1,W1, f1) ∧ (H2,W2, f2) = (H2,W2, lcm(f1, f2)) ≺ (H2,W2, f2).

Case 2: H1 = H, |((W1 ∪W2) \ H) \W1| = 1, and f1 = gcd(f1, f2). Then H2 ⊆ H1,
f2 = lcm(f1, f2), and

|W2 \ ((W1 ∩H2) ∪ (W2 ∩H1) ∪ (W1 ∩W2))| = |W2 \ (H1 ∪W1)|
= |(W1 ∪W2) \ (H1 ∪H2 ∪W1)| = |((W1 ∪W2) \H) \W1| = 1.

Therefore, again using the fact that V0 = ∅, by Proposition 3.1 and Proposition 3.2,

(H1,W1, f1) ∧ (H2,W2, f2) = (H2, (W1 ∩H2) ∪ (W2 ∩H1) ∪ (W1 ∩W2), f2) ≺ (H2,W2, f2).

Case 3: H1 ⊊ H, W1 \H = (W1 ∪W2) \H,

W1 ∩H = {v ∈ H \H1 | |s−1
E\H1

(v)| = 1},

f1(c) = gcd(f1, f2)(c) for all c ∈ C(W1), and for each hereditary set H1 ⊊ H ′ ⊊ H there
exists v ∈ W1 \H ′ such that r(e) ∈ H ′ for all e ∈ s−1(v). Then W1 \H = (W1 ∪W2) \H
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implies that W2 ⊆ H1 ∪ W1. Moreover, f2(c) = lcm(f1, f2)(c) for all c ∈ C(W1), from
which it follows that f2(c) = lcm(f1, f2)(c) for all c ∈ C(W1 ∪W2), since f1(c) = 1 for all
c ∈ C(H1). Notice also that given a hereditary set H1 ⊊ H ′ ⊊ H and v ∈ W1 \ H ′ such
that r(e) ∈ H ′ for all e ∈ s−1(v), it must be the case that v ∈ W1 ∩ H2, since otherwise
v ∈ V0 ⊆ J . Therefore, by Proposition 3.1,

(H1,W1, f1) ∧ (H2,W2, f2) = (H1 ∩H2, (W1 ∩H2) ∪W2, lcm(f1, f2)).

Now, since H1 ⊊ H1 ∪H2, we have H1 ∩H2 ⊊ H2. Also ((W1 ∩H2) ∪W2) \H2 = W2,
and

((W1 ∩H2) ∪W2) ∩H2 = W1 ∩H2 = W1 ∩H = {v ∈ H2 \H1 | |s−1
E\H1

(v)| = 1}
= {v ∈ H2 \ (H1 ∩H2) | |s−1

E\(H1∩H2)
(v)| = 1},

since r(s−1(v)) ⊆ H2 for any v ∈ H2. Thus, by Proposition 3.2, to conclude that

(H1,W1, f1) ∧ (H2,W2, f2) ≺ (H2,W2, f2)

it suffices to check that for each hereditary set H1 ∩ H2 ⊊ H ′ ⊊ H2 there exists v ∈
((W1 ∩H2) ∪W2) \H ′ such that r(e) ∈ H ′ for all e ∈ s−1(v). Given such a hereditary set
H ′, the set H1 ∪ H ′ is also hereditary, and H1 ⊊ H1 ∪ H ′ ⊊ H. Hence, as noted above,
there exists v ∈ (W1 ∩H2) \ (H1 ∪H ′) such that r(e) ∈ H1 ∪H ′ for all e ∈ s−1(v). That
is, v ∈ (W1 ∩H2) \H ′. Since v ∈ H2, we see that

r(e) ∈ (H1 ∪H ′) ∩H2 = (H1 ∩H2) ∪ (H ′ ∩H2) = (H1 ∩H2) ∪H ′ = H ′

for all e ∈ s−1(v), as desired.

Lemma 4.4. Let E be a graph, and suppose that (H1,W1, f1) and (H2,W2, f2) are Wang
triples on E, such that H2 ⊆ H1, J ̸= ∅, and

(H1,W1, f1) ≺ (H1,W1, f1) ∨ (H2,W2, f2).

Then V0 = W2 \ (H1 ∪W1) and |V0| = 1. (See Proposition 3.1 for the definitions of J and
V0.)

Proof. By Proposition 3.1,

(H1,W1, f1) ∨ (H2,W2, f2) = (H, (W1 ∪W2) \H, gcd(f1, f2)),

where H = H1 ∪H2 ∪ J . Since

(H1,W1, f1) ≺ (H1,W1, f1) ∨ (H2,W2, f2),

by Proposition 3.2, there are three possible cases. However, the hypothesis that J ̸= ∅
implies that H1 ̸= H, which rules out two of those cases. Thus H1 ⊊ H, W1 \ H =
(W1∪W2)\H, and f1(c) = gcd(f1, f2)(c) for all c ∈ C(W1), among other conditions. Since
H2 ⊆ H1 and W1 ∩H1 = ∅, we have

W2 \ (H1 ∪ J) = W2 \H ⊆ W1 \H = W1 \ J,
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which implies that W2 \ (H1 ∪W1) ⊆ J . We begin by showing that V0 = W2 \ (H1 ∪W1).
Note that since H2 ⊆ H1, for all v ∈ W1 we have 1 = |s−1

E\H1
(v)| = |s−1

E\(H1∪H2)
(v)|, and

so v /∈ V0. Thus V0 ∩ W1 = ∅. Hence V0 ⊆ W2 \ (H1 ∪ H2) = W2 \ H1, and therefore
V0 ⊆ W2 \ (H1 ∪W1).

Now, suppose that v ∈ (W2 \ (H1 ∪W1)) \ V0. Then, in particular v ∈ J \ V0, and so
|s−1

E\H1
(v)| = |s−1

E\H2
(v)| = 1, but v /∈ W1. Therefore,

(H1,W1, f1) ⊊ (H1,W1 ∪ {v}, f1) ⊊ (H1 ∪ J, (W1 ∪W2) \H, gcd(f1, f2))

= (H1,W1, f1) ∨ (H2,W2, f2),

contrary to hypothesis. Thus W2 \ (H1 ∪W1) ⊆ V0, and so V0 = W2 \ (H1 ∪W1).
It remains to show that |V0| = 1. Since J ̸= ∅, there exists v ∈ V0 = W2 \ (H1 ∪W1).

Let

Jv = {u ∈ J | ∃e1 · · · en ∈ Path(E) ∀i ∈ {2, . . . , n}
(s(e1) = u, r(en) = v, s(ei) ∈ W1 ∪W2)}.

Then it is easy to see that H1 ∪ Jv is a hereditary set, and that |s−1
E\(H1∪Jv)(w)| = 1 for all

w ∈ W1\Jv. Thus (H1∪Jv,W1\Jv, f) is a well-defined Wang triple, where f(c) = f1(c) for
all c ∈ W1 \ Jv, f(c) = 1 for all c ∈ C(H1 ∪ Jv), and f(c) = ∞ for all c /∈ C(H1 ∪ Jv ∪W1).
Now, since v ∈ Jv, and hence Jv ̸= ∅, we have

(H1,W1, f1) ⊊ (H1 ∪ Jv,W1 \ Jv, f) ⊆ (H, (W1 ∪W2) \H, gcd(f1, f2)),

which implies that H1 ∪ Jv = H = H1 ∪ J , and so J = Jv (since J ∩H1 = ∅). It follows
from the definition of J that v is the unique element of V0, and hence |V0| = 1.

Lemma 4.5. Let E be a graph, and suppose that (H1,W1, f1) and (H2,W2, f2) are Wang
triples on E, such that H2 ̸⊆ H1, J ̸= ∅ (see Proposition 3.1), and

(H1,W1, f1) ≺ (H1,W1, f1) ∨ (H2,W2, f2).

Then J ⊆ W1.

Proof. By Proposition 3.1,

(H1,W1, f1) ∨ (H2,W2, f2) = (H1 ∪H2 ∪ J, (W1 ∪W2) \ (H1 ∪H2 ∪ J), gcd(f1, f2)).

Now suppose that v ∈ J \W1, let

Jv = {u ∈ J | ∃e1 · · · en ∈ Path(E) ∀i ∈ {2, . . . , n}
(s(e1) = u, r(en) = v, s(ei) ∈ W1 ∪W2)},

and let H = H1 ∪ H2 ∪ (J \ Jv). We note that for all w ∈ J \ Jv, either r(e) ∈ H1 ∪ H2

for all e ∈ s−1(w), or there is a unique e ∈ s−1(w) such that r(e) /∈ H1 ∪H2, in which case
r(e) ∈ J \ Jv. It follows that H is a hereditary set.

Next, suppose that w ∈ W1 \ H. We claim that |s−1
E\H(w)| = 1. If w /∈ Jv, then

w ∈ W1 \ (H1∪H2∪J), and so |s−1
E\(H1∪H2∪J)(w)| = 1, by [6, Lemma 2.8] (Proposition 3.1).

Since |s−1
E\H(w)| ≤ 1 for all w ∈ W1 ∪ W2, in this case it follows that |s−1

E\H(w)| = 1.
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Therefore we may suppose that w ∈ Jv. Then w ̸= v, since w ∈ W1 and v ∈ J \W1, from
which it follows that w /∈ V0 (since V0 ∩ Jv ⊆ {v}). Hence there is a unique e ∈ s−1(w)
such that r(e) ∈ Jv, and so once again |s−1

E\H(w)| = 1.

Since H is hereditary and |s−1
E\H(w)| = 1 for all w ∈ W1 \H, we conclude that (H,W1 \

H, f) is a well-defined Wang triple, where f(c) = f1(c) for all c ∈ W1 \H, f(c) = 1 for all
c ∈ C(H), and f(c) = ∞ for all c /∈ C(H ∪W1). Since H2 ̸⊆ H1 and Jv ̸= ∅, it follows
that

(H1,W1, f1) ⊊ (H,W1 \H, f) ⊊ (H1 ∪H2 ∪ J, (W1 ∪W2) \ (H1 ∪H2 ∪ J), gcd(f1, f2)),

contradicting the hypothesis that

(H1,W1, f1) ≺ (H1,W1, f1) ∨ (H2,W2, f2).

Therefore J \W1 = ∅.

Proof of Theorem 2.3. (⇐=): It follows immediately from Lemma 4.1 that if L(G(E)) is
lower-semimodular, then E has no forked vertices.

(=⇒): Suppose that E has no forked vertices. It suffices to take Wang triples (H1,W1, f1)
and (H2,W2, f2) such that

(H1,W1, f1) ≺ (H1,W1, f1) ∨ (H2,W2, f2),

and show that
(H1,W1, f1) ∧ (H2,W2, f2) ≺ (H2,W2, f2).

By Lemma 4.3, we may assume that J ̸= ∅. By Proposition 3.1,

(H1,W1, f1) ∨ (H2,W2, f2) = (H, (W1 ∪W2) \H, gcd(f1, f2)),

where H = H1 ∪ H2 ∪ J . Since J ̸= ∅, it cannot be the case that H1 = H. Hence, by
Proposition 3.2, the following conditions hold:

(a) H1 ⊊ H,

(b) W1 \H = (W1 ∪W2) \H,

(c) W1 ∩H = {v ∈ H \H1 | |s−1
E\H1

(v)| = 1},

(d) f1(c) = gcd(f1, f2)(c) for all c ∈ C(W1),

(e) for each hereditary set H1 ⊊ H ′ ⊊ H there exists v ∈ W1 \H ′ such that r(e) ∈ H ′ for
all e ∈ s−1(v).

Since E has no forked vertices, by Lemma 4.2,

(H1,W1, f1) ∧ (H2,W2, f2) = (H1 ∩H2,W, lcm(f1, f2)),

where
W = (W1 ∩H2) ∪ (W2 ∩H1) ∪ (W1 ∩W2).

Moreover, by (d), lcm(f1, f2)(c) = f2(c) for all c ∈ C(W1). Since f1(c) = 1 for all c ∈ H1,
it follows that lcm(f1, f2)(c) = f2(c) for all c ∈ C(W ).
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Let us next consider the case where H2 ⊆ H1, i.e., where H1 ∩ H2 = H2. Then, by
Lemma 4.4, V0 = W2 \ (H1 ∪W1) and |V0| = 1. Thus, using the fact that W2 ∩H2 = ∅,
gives

W2 \W = W2 \ (W2 ∩ (H1 ∪W1)) = W2 \ (H1 ∪W1) = V0,

and so |W2 \W | = 1. Since no vertex in V0 can belong to a cycle, and H2 ⊆ H1, it also
follows that lcm(f1, f2)(c) = f2(c) for all

c ∈ C(H2 ∪ (W2 \W ) ∪W ) = C(H2 ∪W2),

and so lcm(f1, f2) = f2. Therefore, by Proposition 3.2,

(H1,W1, f1) ∧ (H2,W2, f2) = (H2,W, f2) ≺ (H2,W2, f2),

as desired.
Hence we may assume that H2 ̸⊆ H1, i.e., that H1 ∩ H2 ⊊ H2. Then J ⊆ W1, by

Lemma 4.5. Since, by (b), W2 \H ⊆ W1 \H, it follows that

W2 ⊆ H1 ∪W1 ∪ J = H1 ∪W1.

Therefore
W \H2 = (W2 ∩ (H1 ∪W1)) \H2 = W2 ∩ (H1 ∪W1) = W2.

Next, using (c) and J ⊆ W1, gives

(W1 ∩H2) ∪ J = W1 ∩ (H2 ∪ J) = W1 ∩H = {v ∈ (H2 \H1) ∪ J | |s−1
E\H1

(v)| = 1},

from which it follows that

W ∩H2 = W1 ∩H2 = (W1 ∩H) \ J = {v ∈ H2 \ (H1 ∩H2) | |s−1
E\(H1∩H2)

(v)| = 1},

since r(s−1(v)) ⊆ H2 for any v ∈ H2. Therefore, recalling that

(H1,W1, f1) ∧ (H2,W2, f2) = (H1 ∩H2,W, lcm(f1, f2))

and that lcm(f1, f2)(c) = f2(c) for all c ∈ C(W ), by Proposition 3.2, to conclude that

(H1,W1, f1) ∧ (H2,W2, f2) ≺ (H2,W2, f2),

it suffices to show that for each hereditary set H1 ∩H2 ⊊ H ′ ⊊ H2 there exists v ∈ W \H ′

such that r(e) ∈ H ′ for all e ∈ s−1(v).
Let H1 ∩H2 ⊊ H ′ ⊊ H2 be a hereditary set. Then H1 ∪H ′ is a hereditary set, and

H1 ⊊ H1 ∪H ′ ⊊ H1 ∪H2 ⊆ H.

Hence, by (e), there exists v ∈ W1 \ (H1 ∪ H ′) = W1 \ H ′ such that r(e) ∈ H1 ∪ H ′ for
all e ∈ s−1(v). If v ∈ H2 for some such v, then v ∈ (W1 ∩ H2) \ H ′ ⊆ W \ H ′, and
r(e) ∈ (H1 ∪ H ′) ∩ H2 = H ′ for all e ∈ s−1(v), as required. Thus to conclude the proof,
it is enough to show that it cannot be the case that v /∈ H2 for all v ∈ W1 \H ′ satisfying
r(s−1(v)) ⊆ H1 ∪H ′.
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Assume that v /∈ H2 for all v ∈ W1 \ H ′ satisfying r(s−1(v)) ⊆ H1 ∪ H ′. Then, in
particular, v ∈ V0 for all such vertices. Let

V ′ = {u ∈ V0 | r(s−1(u)) ⊆ H1 ∪H ′},

and let

J ′ = {u ∈ J | ∃e1 · · · en ∈ Path(E) ∀i ∈ {2, . . . , n}
(s(e1) = u, r(en) ∈ V ′, s(ei) ∈ W1 ∪W2)}.

Then, using the fact that J ⊆ W1, we see that K = H1 ∪ H ′ ∪ J ′ is hereditary. Also,
H1 ⊊ K ⊊ H = H1 ∪H2 ∪ J , since J ∩ (H1 ∪H2) = ∅.

We claim that |s−1
E\K(u)| = 1 for all u ∈ W1 \K. Let u ∈ W1 \K, and let e ∈ s−1(u) be

the unique edge such that r(e) /∈ H1. Since W1 \K ⊆ W1 \H ′, if r(e) ∈ H ′ (⊆ H1 ∪H ′),
then, by assumption, u /∈ H2, and so u ∈ V ′, contradicting u /∈ J ′. Thus r(e) /∈ H ′.
Moreover, r(e) /∈ J ′, since u /∈ J ′, and therefore r(e) /∈ K. Since |s−1

E\H1
(u)| = 1, it follows

that |s−1
E\K(u)| = 1.

Therefore, defining f(c) = f1(c) for all c ∈ W1 \ K, f(c) = 1 for all c ∈ C(K), and
f(c) = ∞ for all c /∈ C(K ∪W1), we have

(H1,W1, f1) ⊊ (K,W1 \K, f) ⊊ (H, (W1 ∪W2) \H, gcd(f1, f2)),

contrary to hypothesis. (The existence ofK with the above properties also contradicts (e).)
Hence it cannot be the case that v /∈ H2 for all v ∈ W1 \H ′ satisfying r(s−1(v)) ⊆ H1∪H ′,
as required.

We need one more lemma to prove Corollary 2.4.

Lemma 4.6. Let E be a finite acyclic graph. If (H1,W1,∅) and (H2,W2,∅) are Wang
triples on E such that H1 ∪W1 = H2 ∪W2, then H1 = H2 and W1 = W2.

Proof. Seeking a contradiction, suppose that there exists v ∈ H1∩W2. Since v ∈ W2, there
exists e0 ∈ s−1(v) such that r(e0) ̸∈ H2. Since v ∈ H1 and H1 is hereditary, r(e0) ∈ H1

also. Since H1 ∪W1 = H2 ∪W2 and r(e0) ̸∈ H2, it follows that r(e0) ∈ W2. Repeating this
construction gives e1 ∈ s−1(r(e0)) such that r(e1) ∈ H1 ∩W2, and so on. Since E is finite
and acyclic, this process must yield a path e0e1 · · · en where r(ei) ∈ H1 ∩W2 for all i, and
where r(en) is a sink. But then |s−1

E\H2
(r(en))| = 0, contradicting r(en) ∈ W2. Therefore

H1 ∩ W2 = ∅, and so H1 ⊆ H2. By symmetry, H2 ∩ W1 = ∅, and so H2 ⊆ H1, which
implies that H1 = H2. Since H1 ∩W1 = ∅ = H2 ∩W2, it follows that W1 = W2.

Proof of Corollary 2.4. (i) =⇒ (ii): Suppose that L(G(E)) is lower-semimodular. By
Proposition 2.2, L(G(E)) is also upper-semimodular. Since L(G(E)) is finite, it follows
that L(G(E)) is modular (see [5, IV.2, Corollary 3]).

(ii) =⇒ (iii): Suppose that L(G(E)) is modular. Then the pentagon lattice N5 (see Fig. 2)
is not a sublattice of L(G(E)), as discussed above. Therefore to show that L(G(E)) is
distributive it suffices to prove that the diamond lattice M3 (also shown in Fig. 2) is not
a sublattice of L(G(E)).

Seeking a contradiction, suppose that there exist distinct Wang triples (H1,W1,∅),
(H2,W2,∅), and (H3,W3,∅) on E, such that the joins and meets of any two are equal. In
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this case, none of these three is contained in any of the others. We denote (H1,W1,∅) ∨
(H2,W2,∅) by (H∨,W∨,∅), and (H1,W1,∅) ∧ (H2,W2,∅) by (H∧,W∧,∅).

By Proposition 3.1,

H∨ ∪W∨ = Hi ∪Wi ∪Hj ∪Wj = Hi ∪Wi ∪ [(Hj ∪Wj) \ (Hi ∪Wi)] (4.1)

for all distinct i, j ∈ {1, 2, 3}. Therefore

(Hj ∪Wj) \ (Hi ∪Wi) = (Hk ∪Wk) \ (Hi ∪Wi), (4.2)

whenever {i, j, k} = {1, 2, 3}. Using Proposition 3.1 again,

(H∧,W∧,∅) = (H1 ∩H2, (W1 ∩H2) ∪ (W2 ∩H1) ∪ ((W1 ∩W2) \ V0),∅).

Since L(G(E)) is modular, and therefore lower-semimodular, by Theorem 2.3, E has no
forked vertices. Hence, by Lemma 4.2, W1 ∩W2 ∩ V0 = ∅, and so

H∧ ∪W∧ = (H1 ∩H2) ∪ (W1 ∩H2) ∪ (W2 ∩H1) ∪ (W1 ∩W2) = (H1 ∪W1) ∩ (H2 ∪W2).

By symmetry,
H∧ ∪W∧ = (Hi ∪Wi) ∩ (Hj ∪Wj) (4.3)

for all distinct i, j ∈ {1, 2, 3}.
If {i, j, k} = {1, 2, 3}, then, by Eq. (4.1),

H∨ ∪W∨ = [(Hi ∪Wi) \ (Hj ∪Wj)] ∪ [(Hi ∪Wi) ∩ (Hj ∪Wj)]

∪[(Hj ∪Wj) \ (Hi ∪Wi)]

= [(Hi ∪Wi) \ (Hk ∪Wk)] ∪ [(Hi ∪Wi) ∩ (Hk ∪Wk)]

∪[(Hk ∪Wk) \ (Hi ∪Wi)].

From Eq. (4.2) and Eq. (4.3) it follows that

(Hi ∪Wi) \ (Hj ∪Wj) = (Hi ∪Wi) \ (Hk ∪Wk),

and so Hj ∪Wj = Hk ∪Wk. Thus, by Lemma 4.6, (Hj,Wj,∅) = (Hk,Wk,∅), producing
a contradiction. Hence the diamond M3 is not a sublattice of L(G(E)), as required.

(iii) =⇒ (i): Suppose that L(G(E)) is distributive. Since, as mentioned above, every
distributive lattice is modular, L(G(E)) is modular, and hence also lower-semimodular.

Now, let us assume that E is simple, and prove that (i) ⇐⇒ (iv).

(i) ⇐⇒ (iv): It suffices, by Theorem 2.3, to show that there exists a forked vertex in E
if and only if there are e, f ∈ E1 such that s(e) = s(f), r(e) ̸≥ r(f), and r(f) ̸≥ r(e).

For the forward direction, suppose that v is a forked vertex in E. Then there exist
distinct e, f ∈ s−1(v) such that r(g) ̸≥ r(e) for all g ∈ s−1(v) \ {e} and r(g) ̸≥ r(f) for all
g ∈ s−1(v) \ {f}. In particular, s(e) = s(f), r(e) ̸≥ r(f), and r(f) ̸≥ r(e).

For the converse, suppose that there exist v ∈ E0 and e, f ∈ s−1(v), such that r(e) ̸≥
r(f) and r(f) ̸≥ r(e). For convenience, we will refer to this situation as v splitting at e and
f . Since E is finite and acyclic, we may assume that v is ≤-minimal, among vertices that
spilt (i.e., no u ∈ E0 satisfying v > u splits). Next, using the fact that E is finite and has
no parallel edges, among the g ∈ s−1(v) satisfying r(g) ≥ r(e) we can find one, denoted e′,
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which is ≤-maximal. That is, r(g) ̸≥ r(e′) for all g ∈ s−1(v) \ {e′}. Likewise, among the
g ∈ s−1(v) satisfying r(g) ≥ r(f) we can find one, denoted f ′, such that r(g) ̸≥ r(f ′) for
all g ∈ s−1(v) \ {f ′}. To conclude that v is forked it suffices to show that e′ ̸= f ′.

Suppose that e′ = f ′. Then r(e′) ≥ r(e) and r(f ′) ≥ r(f) imply that e′ ̸= e and e′ ̸= f .
Since E has no parallel edges, there must exist g, h ∈ E1 such that s(g) = r(e′) = s(h),
r(g) = r(e), and r(h) = r(f). But then u = r(e′) = r(f ′) splits at g and h, and satisfies
v > u, contrary to the choice of v. Thus e′ ̸= f ′, as desired.

5 Atoms and atomistic congruence lattices

In this section, we describe the atoms in the congruence lattice of a graph inverse semigroup,
and prove Theorem 2.5 and Corollary 2.6.

For convenience, given appropriate H,W ⊆ E0, by (H,W, 1H) or (H,W, 1) we denote
the Wang triple on E with the trivial cycle function, relative to H. That is, 1H : C(E0) −→
Z+ ∪ {∞} is defined by 1H(c) = 1 for all c ∈ C(H), and 1H(c) = ∞ for all c ∈ C(E0 \H).

Proposition 5.1. Let E be a graph, and let (H,W, f) be a Wang triple on E. Then
(H,W, f) is an atom in the lattice of Wang triples on E if and only if one of the following
holds:

(i) H = ∅, |W | = 1, and f = 1∅;

(ii) H is a strongly connected component of E, W = ∅, |s−1(v)| ≥ 2 for each v ∈ H that
is not a sink, and f = 1H .

Proof. It is easy to see that the least element in the lattice of Wang triples on E is
(∅,∅, 1∅).

If (H,W, f) satisfies (i), then clearly (∅,∅, 1∅) ≺ (H,W, f), by Proposition 3.2, and so
(H,W, f) is an atom. Now suppose that (H,W, f) satisfies (ii). Then {v ∈ H | |s−1(v)| =
1} = ∅, and there are no hereditary sets H ′ satisfying ∅ ⊊ H ′ ⊊ H. Thus (∅,∅, 1∅) ≺
(H,W, f), by Proposition 3.2, once again.

Conversely, suppose that (H,W, f) is an atom, i.e., (∅,∅, 1∅) ≺ (H,W, f). By Propo-
sition 3.2, there are three possible cases, which we examine individually.

Case 1: H = ∅, W = ∅, and f ≺ 1∅. The last clause cannot be satisfied by any f ,
and so this case is not actually possible.

Case 2: H = ∅, |W \∅| = 1, and f = 1∅. This is condition (i) above.
Case 3: H ̸= ∅, W = ∅, {v ∈ H | |s−1(v)| = 1} = ∅, and there are no non-empty

hereditary sets H ′ ⊊ H. The last clause amounts to saying that {u ∈ E0 | v ≥ u} = H
for all v ∈ H, which implies that H is strongly connected. Finally, given that W = ∅, it
must be the case that f(c) = 1H . Thus condition (ii) is satisfied.

Corollary 5.2. Let E be a graph, let (H,W, f) be a Wang triple on E, and suppose that
(H,W, f) is the join of a (possibly infinite) collection of atoms in the lattice of Wang triples
on E. Then one of the following conditions holds for each v ∈ H:

(i) |s−1(v)| = 0;

(ii) |s−1(v)| = 1, v does not belong to a cycle, and v > u for some u ∈ E0 such that
|s−1(u)| ≠ 1;
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(iii) |s−1(v)| ≥ 2, and r(e) ≥ v for all e ∈ s−1(v).

Moreover, if (H,W, f) is the join of finitely many atoms, then H has finitely many strongly
connected components and finitely many v ∈ H such that |s−1(v)| = 1.

Proof. Write

(H,W, f) =
∨
i∈I

(∅,Wi, 1) ∨
∨
i∈K

(Hi,∅, 1), (5.1)

where each (∅,Wi, 1) is of the form described in (i) of Proposition 5.1, and each (Hi,∅, 1)
is of the form described in (ii) of Proposition 5.1.

We claim that
∨

i∈I(∅,Wi, 1) = (∅,
⋃

i∈I Wi, 1). (Note that, since this is a poten-
tially infinite join, Proposition 3.1 does not apply.) Clearly (∅,Wi, 1) ⊆ (∅,

⋃
i∈I Wi, 1)

for each i ∈ I. Now suppose that each (∅,Wi, 1) ⊆ (H ′,W ′, f ′) for some Wang triple
(H ′,W ′, f ′). Then

⋃
i∈I Wi ⊆ H ′∪W ′, and so (∅,

⋃
i∈I Wi, 1) ⊆ (H ′,W ′, f ′). It follows that∨

i∈I(∅,Wi, 1) = (∅,
⋃

i∈I Wi, 1). An even simpler argument shows that
∨

i∈K(Hi,∅, 1) =
(
⋃

i∈K Hi,∅, 1).
By the definition of Wang triples and Proposition 5.1, each Wi consists of vertices v

satisfying |s−1(v)| = 1, while each Hi consists of vertices v satisfying |s−1(v)| ≠ 1, and so
(
⋃

i∈I Wi) ∩ (
⋃

i∈K Hi) = ∅. Thus, by Proposition 3.1,

(H,W, f) =
(
∅,

⋃
i∈I

Wi, 1
)
∨
( ⋃

i∈K

Hi,∅, 1
)
=

(
J ∪

⋃
i∈K

Hi,
(⋃

i∈I

Wi

)
\ J, 1

)
, (5.2)

where
V0 =

{
u ∈

⋃
i∈I

Wi

∣∣∣ s−1
E\(

⋃
i∈K Hi)

(u) = ∅
}

and

J =
{
u ∈

⋃
i∈I

Wi

∣∣∣ ∃e1 · · · en ∈ Path(E) ∀i ∈ {2, . . . , n}(
s(e1) = u, r(en) ∈ V0, s(ei) ∈

⋃
i∈I

Wi

)}
.

Now, let v ∈ H, and suppose that |s−1(v)| ≠ 0. If |s−1(v)| ≥ 2, then v ∈
⋃

i∈K Hi, since
J ⊆

⋃
i∈I Wi and H = J ∪

⋃
i∈K Hi. Thus v ∈ Hi for some i ∈ K, where Hi is hereditary

and strongly connected, by Proposition 5.1. It follows that r(e) ≥ v for all e ∈ s−1(v), and
hence (iii) is satisfied.

Next, suppose that |s−1(v)| = 1. Then, by similar reasoning, v ∈ J , and so, in par-
ticular, v does not belong to a cycle. Moreover v > u for some u ∈ Hi and i ∈ K. By
Proposition 5.1, either |s−1(u)| = 0 or |s−1(u)| ≥ 2, and so (ii) holds.

For the final statement, suppose that (H,W, f) satisfies Eq. (5.1), and therefore also
Eq. (5.2), with I and K finite. By construction, the strongly connected components in H
are precisely the Hi, and the v ∈ H satisfying |s−1(v)| = 1 are elements of the singleton
sets Wi. It follows that H can contain only finitely many strongly connected components
and v ∈ H such that |s−1(v)| = 1.

We can now give the proof of Theorem 2.5.
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Proof of Theorem 2.5. (=⇒): If every congruence on G(E) is a join of atoms, then con-
ditions (i), (ii), and (iii) hold for every v ∈ E0, by Corollary 5.2, applied to (E0,∅, 1).
Moreover, if every congruence on G(E) is the join of finitely many atoms (i.e., L(G(E)) is
atomistic), then, again applying Corollary 5.2 to (E0,∅, 1), shows that E0 has only finitely
many strongly connected components and vertices v such that |s−1(v)| = 1.

(⇐=): Suppose that each v ∈ E0 satisfies one of the conditions (i), (ii), and (iii) in the
statement of the theorem, and that (H,W, f) is a Wang triple on E. Then W consists
entirely of vertices v ∈ E0 such that |s−1(v)| = 1 and v does not belong to a cycle. Thus
C(W ) = ∅, and so necessarily f = 1H = 1. Moreover, (∅,W, 1) and (∅, {v}, 1) are well-
defined Wang triples, for all v ∈ W . It is easy to see (as in the proof of Corollary 5.2) that
(∅,W, 1) =

∨
v∈W (∅, {v}, 1), which is a join of atoms, by Proposition 5.1.

Next, again by hypothesis, we can write

H = U ∪
⋃
i∈I

Hi ∪
⋃
i∈K

{wi}, (5.3)

where each wi is a sink, each Hi is hereditary and strongly connected, with |s−1(v)| ≥ 2 for
all v ∈ H, and U consists of vertices satisfying condition (ii). Then

⋃
i∈I Hi and

⋃
i∈K{wi}

are hereditary. Also, once again, it is easy to see that (∅, U, 1) =
∨

v∈U(∅, {v}, 1),
(
⋃

i∈I Hi,∅, 1) =
∨

i∈I(Hi,∅, 1), and (
⋃

i∈K{wi},∅, 1) =
∨

i∈K({wi},∅, 1), where all the
Wang triples involved are well-defined. Moreover, by condition (ii), for each v ∈ U , ei-
ther v > u for some i ∈ I and u ∈ Hi, or v > wi for some i ∈ K. It follows, using
Proposition 3.1, that

(H,∅, 1) = (∅, U, 1) ∨
(⋃

i∈I

Hi,∅, 1
)
∨
( ⋃

i∈K

{wi},∅, 1
)
,

and so
(H,∅, 1) =

∨
v∈U

(∅, {v}, 1) ∨
∨
i∈I

(Hi,∅, 1) ∨
∨
i∈K

({wi},∅, 1), (5.4)

which is a join of atoms, by Proposition 5.1. Noting that, by Proposition 3.1,

(H,W, f) = (H,W, 1) = (H,∅, 1) ∨ (∅,W, 1) = (H,∅, 1) ∨
∨
v∈W

(∅, {v}, 1), (5.5)

we conclude that (H,W, f) is a join of atoms.
Finally, if E0 has only finitely many strongly connected components and vertices v such

that |s−1(v)| = 1, then W , as well as U , I, and K in Eq. (5.3), must be finite. Hence,
(H,W, f) is a finite join of atoms, by Eq. (5.4) and Eq. (5.5).

Proof of Corollary 2.6. (i) =⇒ (ii): Suppose that |s−1(v)| ≤ 1 for all v ∈ E0. We define a
mapping Ψ : L(G(E)) −→ P(E0) as follows:

Ψ((H,W,∅)) = H ∪W,

for every Wang triple (H,W,∅) on E. We will show that Ψ is a lattice isomorphism.
By Lemma 4.6, Ψ is injective. To show that is it surjective, let V ∈ P(E0). By (i), we

can write V = U ∪ W , where U consists of sinks and W consists of vertices v satisfying
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|s−1(v)| = 1 (with either set possibly empty). Then ({v},∅,∅) is a Wang triple for each
v ∈ U , and (∅, {v},∅) is a Wang triple for each v ∈ W . By Proposition 3.1,∨

v∈U

({v},∅,∅) ∨
∨
v∈W

(∅, {v},∅) = (H ′,W ′,∅)

for some sets H ′ and W ′ such that V = H ′ ∪W ′, and so Ψ((H ′,W ′,∅)) = V , from which
it follows that Ψ is surjective. It remains to show that Ψ preserves meets and joins.

Let (H1,W1,∅) and (H2,W2,∅) be Wang triples on E, and let J be the set from
Proposition 3.1. Then

Ψ((H1,W1,∅) ∨ (H2,W2,∅)) = Ψ((H1 ∪H2 ∪ J, (W1 ∪W2) \ (H1 ∪H2 ∪ J),∅))

= (H1 ∪H2 ∪ J) ∪ ((W1 ∪W2) \ (H1 ∪H2 ∪ J))

= (H1 ∪W1) ∪ (H2 ∪W2)

= Ψ((H1,W1,∅)) ∪Ψ((H2,W2,∅)).

Next, since |s−1(v)| ≤ 1 for all v ∈ E0, the graph E cannot have forked vertices. Thus, by
Lemma 4.2,

(H1,W1,∅) ∧ (H2,W2,∅) = (H1 ∩H2, (W1 ∩H2) ∪ (W2 ∩H1) ∪ (W1 ∩W2),∅),

and so

Ψ((H1,W1,∅) ∧ (H2,W2,∅)) = Ψ((H1 ∩H2, (W1 ∩H2) ∪ (W2 ∩H1) ∪ (W1 ∩W2),∅))

= (H1 ∩H2) ∪ (W1 ∩H2) ∪ (W2 ∩H1) ∪ (W1 ∩W2)

= (H1 ∪W1) ∩ (H2 ∪W2)

= Ψ((H1,W1,∅)) ∩Ψ((H2,W2,∅)).

(ii) =⇒ (iii): The power set lattice P(E0) is, by definition, atomistic.

(iii) =⇒ (i): Suppose that L(G(E)) is atomistic. Then one of the conditions (i), (ii), or
(iii) in Theorem 2.5 holds for every v ∈ E0. Since E is assumed to be acyclic, no v ∈ E0

satisfies condition (iii) in that theorem. Hence |s−1(v)| ≤ 1 for every v ∈ E0.

6 Generating congruences

The purpose of this section is to prove Theorem 2.7.

Proof of Theorem 2.7. (⇐=): Suppose that A contains all the congruences of types (i) and
(ii) in the statement of the theorem, and let (H,W,∅) be any Wang triple on E. Since
E is finite and acyclic, we can write H =

⋃n
i=0 Hi, for some n ≥ 0, where for each i, the

set Hi consists of the vertices h ∈ H such that there exists p ∈ Path(E) of length i, with
s(p) = h and r(p) a sink, and such that i is maximal for this property of h. For each i ≥ 1
and h ∈ Hi choose eh ∈ s−1(h) such that r(eh) ∈ Hi−1, and let

Gh = {v ∈ E0 | r(f) ≥ v for some f ∈ s−1(h) \ {eh}}.

By the construction of Hi and the hypothesis that E is simple, here r(f) ̸≥ r(eh) for all
f ∈ s−1(h) \ {eh}, and so, in particular, r(eh) /∈ Gh. Notice also that ({h},∅,∅) is a
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well-defined Wang triple for each h ∈ H0, that (Gh, {h},∅) is a well-defined Wang triple
for each h ∈ Hi with i ≥ 1, and that both belong to A. We will next show, by induction
on n, that

(H,∅,∅) =
∨

h∈H0

({h},∅,∅) ∨
n∨

i=1

∨
h∈Hi

(Gh, {h},∅).

If n = 0, and so H = H0 consists of sinks, then it follows immediately from Propo-
sition 3.1 that (H,∅,∅) =

∨
h∈H0

({h},∅,∅). Supposing that n ≥ 1, let us assume
inductively that

( n−1⋃
i=0

Hi,∅,∅
)
=

∨
h∈H0

({h},∅,∅) ∨
n−1∨
i=1

∨
h∈Hi

(Gh, {h},∅).

(It is easy to see that
⋃n−1

i=0 Hi is hereditary.) By construction, s−1
E\(Gh∪Hn−1)

(h) = ∅ for
each h ∈ Hn, and so, by Proposition 3.1,

(Gh, {h},∅) ∨
( n−1⋃

i=0

Hi,∅,∅
)
=

(
Gh ∪ {h} ∪

n−1⋃
i=0

Hi,∅,∅
)
.

Since H =
⋃n

i=0 Hi, iterating this computation gives

( n−1⋃
i=0

Hi,∅,∅
)
∨

∨
h∈Hn

(Gh, {h},∅) = (H,∅,∅),

which proves the claim. In particular, if W = ∅, then (H,W,∅) is a join of congruences
from A.

Now suppose that W ̸= ∅, and for each w ∈ W define Kw to be a minimal heredi-
tary subset of H, such that |s−1

E\Kw
(w)| = 1. Then clearly (Kw, {w},∅) is a Wang triple

belonging to A. Since |s−1
E\H(w)| = 1, applying Proposition 3.1 once more, gives

(H,∅,∅) ∨ (Kw, {w},∅) = (H, {w},∅)

for each w ∈ W . It follows that

(H,W,∅) = (H,∅,∅) ∨
∨
w∈W

(Kw, {w},∅)

=
∨

h∈H0

({h},∅,∅) ∨
n∨

i=1

∨
h∈Hi

(Gh, {h},∅) ∨
∨
w∈W

(Kw, {w},∅).

Thus A generates L(G(E)).

(=⇒): It suffices to show that every congruence ρ of type (i) or (ii) in the statement of
the theorem is indecomposable, in the sense that if ρ = σ ∨ τ , then σ = ρ or τ = ρ. Any
congruence of type (i) is an atom, by Proposition 5.1. As such, any congruence of this sort
is not the join of two or more distinct congruences, and therefore the claim trivially holds
for every congruence of type (i).

Now let (H, {v},∅) be a congruence of type (ii). Clearly (H,∅,∅) ⊂ (H, {v},∅). So to
show that (H, {v},∅) is indecomposable it suffices to prove that if τ is any other congruence
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such that τ ⊆ (H, {v},∅), then τ ⊆ (H,∅,∅) or τ = (H, {v},∅). If τ = (H ′,W ′,∅) for
some H ′ and W ′, then H ′ ⊆ H and W ′ \ H ⊆ {v}. Hence either W ′ \ H = ∅ or
W ′ \ H = {v}. In the first case, W ′ ⊆ H, and so τ = (H ′,W ′,∅) ⊆ (H,∅,∅). In the
second case, W ′ \ H = {v}, the condition that |s−1

E\H′(v)| = 1 and the minimality of H

imply that H ′ = H. Then

W ′ = W ′ \H ′ = W ′ \H = {v},

giving τ = (H, {v},∅), as required.
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