
Chapter 1

Convex sets and functions

1.1 Introduction

Here is a motivating problem (taken from Meerschaert). Suppose a farm
has 625 acres available for planting. The available crops are corn, wheat,
and oats. The available resources include 1,000 acre-feet of water for the
growing season, and 300 hours of labor per week. The crop requirements and
profitability are detailed in the following table.

Reqs/acre corn wheat oats
water(acre− ft) 3.0 1.0 1.5
Labor(hrs/week) 0.8 0.2 0.3
Y ield(dollars) 400 200 250

The question is how to best allocate these resources to the crops to maxi-
mize profit. If x1 denotes the number of acres of corn, x2 denotes the number
of acres of wheat, and x3 denotes the number of acres of oats, our job is to
maximize

400x1 + 200x2 + 250x3,

subject to the constraints of positivity,

xi ≥ 0,

acreage,
x1 + x2+3 ≤ 625,

water,
3x1 + x2 + 1.5x3 ≤ 1, 000,
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and labor availability,

.8x1 + .2x2 + .3x3 ≤ 300.

This problem is an example of a linear program. There are successful
computational methods based largely on a geometric analysis of the prob-
lems. We will start by considering some of these geometric structures, talk a
bit about more general problems, and then return to the special methods for
linear programming. The ideas are nontrivial, but it is still surprising that
modern techniques and broad applications, especially in economic problems,
were not really developed until after WW2.

In the problem above, the set Ω of values x1, x2, x3 satisfying the con-
straints is a convex set. The properties of such sets are developed first.

1.2 Basics of convex sets

A set Ω ⊂ RN is convex whenever two points U, V are in the set, then so is
the line segment joining them. That is, U, V ∈ Ω implies wU +(1−w)V ∈ Ω
for all w ∈ [0, 1]. Here is a set of examples.

(1) A linear subspace
(2) An affine subspace.

Ω = {U0 + V }

If X = U0 + V1, Y = U0 + V2, then

tX + (1− t)Y = U0 + tV1 + (1− t)V2, 0 ≤ t ≤ 1.

(3) A ball of radius R centered at any point. By the triangle inequality

‖tX + (1− t)Y ‖ ≤ t‖X‖+ (1− t)‖Y ‖ ≤ R.

(4) Any translate of a convex set, U0 + V , where V ∈ Ω.
(5) Half spaces. If X∗ ∈ RN then

F± = {Y ∈ RN , X∗ • Y ≤ α}

is convex since

X∗ • (tY1 + (1− t)Y2) = tX∗ • Y1 + (1− t)X∗ • Y2 ≤ tα + (1− t)α = α.
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In general the union of convex sets is not convex (easy), but convex sets
are closed under intersections (also easy). Apply this to the linear program-
ming example above. A set which is the intersection of a finite number of
half spaces is a convex polytope.

If wj ≥ 0 and
∑J

j=1wj = 1, say that V =
∑J

j=1wjUj ∈ Ω is a convex
combination of the points Uj.

Lemma 1.2.1. Suppose that Ω ⊂ RN is convex and U1, . . . , UJ ∈ Ω. If
wj ≥ 0 and

∑J
j=1wj = 1, then

∑J
j=1wjUj ∈ Ω.

Proof. Without loss of generality, assume that each wj > 0. The proof is by
induction on J , the case J = 1 being trivial. For J > 1 write

J∑
j=1

wjUj = w1U1 +
J∑
j=2

wjUj = w1U1 + [
J∑
j=2

wj]
[( J∑

j=2

wj∑J
j=2wj

)
Uj

]
.

Since
∑J

j=2(wj/[
∑J

j=2wj]) = 1, the term
∑J

j=2(wj/[
∑J

j=2wj])Uj is a convex
combination of J−1 elements of Ω, hence is in Ω by the induction hypothesis.
By the definition of convexity

J∑
j=1

wjUj = w1U1 +
J∑
j=2

wjUj ∈ Ω.

Suppose D ⊂ RN is any set. Then there is a smallest convex set co(D)
containingD, called the convex hull ofD. It can be defined as the intersection
of all convex sets containing D.

Proposition 1.2.2. The set co(D) is the set of all convex combinations of
elements of D.

Proof. Let Ω be the set of all convex combinations of elements of D. Obvi-
ously Ω ⊂ co(D). Also note that Ω is convex, so co(D) ⊂ Ω.

1.3 Convex functions

Earlier we saw that smooth functions f : RN → R with everywhere positive
semidefinite Hessians had nice properties, including the fact that critical
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points were global minimizers. Even in one variable the condition that a
function have positive second derivative has some weaknesses. Consider the
family of functions

fε(x) =

∫ x

0

tan−1(t/ε) dt, −∞ < x <∞, ε > 0.

This is a smooth function, with f ′ε(x) = tan−1(x/ε) and

f ′′ε (x) =
1/ε

1 + (x/ε)2
=

ε

x2 + ε2
> 0.

As ε → 0+ the functions converge pointwise to π|x|
2

, which has the same
global minimizer as fε(x), but which is not differentiable. We would like
some condition that captures the behavior of the ’positive second derivative
test’, but does not require differentiability. The techniques that are developed
often prove to be effective ways to analyze problems.

Suppose Ω ⊂ RN is convex and f : Ω→ R. Say that f is convex if

f(tX + (1− t)Y ) ≤ tf(X) + (1− t)f(Y ), X, Y ∈ Ω, 0 ≤ t ≤ 1.

Say that f is strictly convex if

f(tX + (1− t)Y ) < tf(X) + (1− t)f(Y ), X 6= Y ∈ Ω, 0 < t < 1.

Notice that this definition simply says that the values of f on the line segment
joining X and Y lie below the line segment joining f(X) and f(Y ).

1.3.1 Convexity in one variable

Let’s start with the case of one variable, when Ω = (α, β).

Theorem 1.3.1. If f(x) is a convex function defined on (α, β), then f is
continuous there.

Proof. Suppose r, s, t, u, v ∈ (α, β) with r < v < s < t < u. Ignoring v for
now, write

t =
t− s
u− s

u+
u− t
u− s

s.

Convexity of f gives

f(t) ≤ t− s
u− s

f(u) +
u− t
u− s

f(s)
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=
t− s
u− s

f(u) +
u− t
u− s

f(s) +
t− s
u− s

f(s)− t− s
u− s

f(s),

or

f(t) ≤ f(s) + (t− s)f(u)− f(s)

u− s
. (1.3.1)

There is a version of this inequality for f(s),

f(s) ≤ f(r) + (s− r)f(t)− f(r)

t− r
,

which may be rewritten as

f(t) ≥ f(r) + (t− r)f(s)− f(r)

s− r

= f(r) + (t− s+ s− r)f(s)− f(r)

s− r
,

or

f(t) ≥ f(s) + (t− s)f(s)− f(r)

s− r
. (1.3.2)

The right hand sides of the inequalities (1.3.1) and (1.3.2) are functions
of t with limits as t → s+. In both cases the limits are f(s). Since f(t) is
sandwiched between these functions, the Squeeze Theorem gives

lim
t→s+

f(t) = f(s).

The case
lim
v→s−

f(r) = f(s)

is similar.

Theorem 1.3.2. If f(x) is a differentiable function defined on (α, β), then
f is convex if and only if f lies above its tangent lines, that is

f(x) + f ′(x)(y − x) ≤ f(y), x, y ∈ (α, β).

Proof. Suppose first that f is convex. Then the defining inequality f(ty +
(1− t)x) ≤ tf(y) + (1− t)f(x) may be written as

f(t(y − x) + x)− f(x) ≤ t(f(y)− f(x)).
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For x 6= y and t 6= 0 this is the same as

f(t(y − x) + x)− f(x)

t(y − x)
(y − x) ≤ f(y)− f(x).

Take the limit as h = t(x− y)→ 0 to get

f ′(x)(y − x) ≤ f(y)− f(x),

as desired.
Conversely, suppose

f(x) + f ′(x)(y − x) ≤ f(y), x, y ∈ (α, β),

and let
w = tx+ (1− t)y, 0 < t < 1.

Then
f(w) + f ′(w)(x− w) ≤ f(x), (1.3.3)

f(w) + f ′(w)(y − w) ≤ f(y).

Since

y − w = − t

1− t
(x− w),

we find that

f(w) + f ′(w)(x− w)(
−t

1− t
) ≤ f(y). (1.3.4)

Finally, multiply (1.3.3) by t and (1.3.4) by (1− t) and add to get

f(w) ≤ tf(x) + (1− t)f(y),

or
f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

When a function g has enough derivatives, there is a simple second deriva-
tive test that can be used to recognize convex functions.

Theorem 1.3.3. Suppose f(x) has a nonnegative (positive) second derivative
on (α, β). Then f is convex (resp. strictly convex).



1.3. CONVEX FUNCTIONS 7

Proof. For some z between x and y,Taylor’s Theorem gives

f(y) = f(x) + f ′(x)(y − x) +
1

2
(y − x)f ′′(z)(y − x).

By hypothesis,
f(y) ≥ f(x) + f ′(x)(y − x),

so f is convex by the previous result.

This last theorem has a converse of sorts.

Theorem 1.3.4. Suppose that f has two derivatives on (α, β), and f ′′(x) < 0
for all x ∈ (α, β). Then f is not convex on (α, β).

Proof. Picking distinct points x1 < x2 in the interval (α, β), consider the
function

g(x) = f(x)− f(x1)− f ′(x1)(x− x1).
The function f ′(x) is strictly decreasing on [α, β]. This implies g′(x) < 0 for
x > α. Since g(x1) = 0, it follows that g(x2) < 0. This means

f(x2) < f(x1) + f ′(x1)(x2 − x1),

so g cannot be convex.

Finally, here is the answer to a calculus student’s prayers.

Theorem 1.3.5. Suppose that f : (α, β)→ R is convex, and f ′(x1) = 0 for
some x1 ∈ (α, β). Then x1 is a global minimizer for f . If f is strictly convex,
then f has at most one global minimizer.

Proof. To see that x1 is a global minimizer, simply use the fact that the
tangent line to a convex function lies below the graph,

f(x1) + f ′(x1)(x− x1) ≤ f(x)

to conclude that

f(x1) ≤ f(x), for all x ∈ (α, β).

Suppose that f is strictly convex, with a global minimizer at x1. If x2
is distinct from x1, and f(x1) = f(x2), the defining inequality for strict
convexity gives

f(tx2 + (1− t)x1) < tf(x2) + (1− t)f(x1) = f(x1), 0 < t < 1,

contradicting the assumption that x1 is a global minimizer.
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1.3.2 Convexity in several variables

The definition of convexity for a function f : RN → R describes how f
behaves on line segments in RN . Here is a way to strengthen the link to
convex functions of one variable.

Lemma 1.3.6. Suppose Ω ⊂ RN is convex, and X, Y ∈ Ω. If f : Ω → R is
(strictly) convex, then

g(t) = f((1− t)X + tY ), 0 ≤ t ≤ 1,

is (strictly) convex on [0, 1].

Proof. Suppose x1, x2 ∈ [0, 1] and 0 ≤ t ≤ 1. For i = 1, 2, let

Zi = (1− xi)X + xiY.

Then

g(tx1 + (1− t)x2) = f([1− tx1 − (1− t)x2]X + [tx1 + (1− t)x2]Y )

= f((1− t)([1− x2]X + x2Y ) + t([1− x1]X + x1Y ))

= f((1− t)Z2 + tZ1) ≤ (1− t)f(Z2) + tf(Z1) = (1− t)g(x2) + tg(x1),

as desired.

Theorem 1.3.7. Suppose Ω ⊂ RN is convex and f : Ω → R is convex. If
Xk ∈ Ω and

wk ≥ 0,
K∑
k=1

wk = 1,

then

f(
K∑
k=1

wkXk) ≤
K∑
k=1

wkf(Xk).

If f is strictly convex and all wk > 0, then equality holds if and only if all
Xk are the same.

Proof. Without loss of generality assume 0 < w1 < 1. By induction on K,

f(
K∑
k=1

wkXk) = f(w1X1 + [
K∑
k=2

wk]
K∑
k=2

wk

[
∑K

k=2wk]
Xk)
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≤ w1f(X1) + [
K∑
k=2

wk]f(
K∑
k=2

wk

[
∑K

k=2wk]
Xk) ≤

K∑
k=1

wkf(Xk).

Theorem 1.3.8. Suppose Ω ⊂ RN is convex and f : Ω→ R is convex. Any
local minimizer of f is a global minimizer. If f is strictly convex this global
minimizer is unique.

Proof. Suppose Y is a local minimizer and Z 6= Y with f(Z) < f(Y ). The
fact that Y is a local minimizer means that for t1 > 0 and sufficiently small,
f((1− t1)Y + t1Z) ≥ f(Y ), but since f(Z) < f(Y ) the value (1− t1)f(Y ) +
t1f(Z) is strictly smaller than f(Y ), so

f((1− t1)Y + tZ) > (1− t1)f(Y ) + t1f(Z),

contradicting the convexity of f .
The strictly convex result is similar.

Theorem 1.3.9. Suppose Ω ⊂ RN is an open convex set and f : Ω→ R has
first partial derivatives in Ω. Then

(a) f : Ω→ R is convex if and only if

f(X) +∇f(X) • (Y −X) ≤ f(Y ), X, Y ∈ Ω,

(b) f : Ω→ R is strictly convex if and only if

f(X) +∇f(X) • (Y −X) < f(Y ), X 6= Y.

Proof. The proof is essentially the same as in one variable.
Suppose f is convex. Then for 0 ≤ t ≤ 1

f((1− t)X + tY ) ≤ (1− t)f(X) + tf(Y ),

or for 0 < t < 1

f((1− t)X + tY )− f(X)

t
=
f(X + t(Y −X))− f(X)

t
≤ f(Y )− f(X).

Taking the limit as t→ 0 gives

∇f(X) • (Y −X) ≤ f(Y )− f(X).
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Conversely, suppose

f(X) +∇f(X) • (Y −X) ≤ f(Y ), X, Y ∈ Ω,

and let

W = tX + (1− t)Y, 0 < t < 1.

Then

f(W ) +∇f(W ) • (X −W ) ≤ f(X), (1.3.5)

f(W ) +∇f(W ) • (Y −W ) ≤ f(Y ).

Since

Y −W = − t

1− t
(X −W ),

we find that

f(W ) +∇f(W ) • (X −W )(
−t

1− t
) ≤ f(Y ). (1.3.6)

Finally, multiply (1.3.5) by t and (1.3.6) by (1− t) and add to get

f(W ) ≤ tf(X) + (1− t)f(Y ),

or

f(tX + (1− t)Y ) ≤ tf(X) + (1− t)f(Y ).

Corollary 1.3.10. Suppose Ω ⊂ RN is an open convex set and f : Ω → R
is convex and has first partial derivatives in Ω. Then any critical point of f
is a global minimizer.

Proof. If X is a critical point then ∇f(X) = 0. Thus for any Y ∈ Ω,

f(X) +∇f(X) • (Y −X) = f(X) ≤ f(Y ).

Theorem 1.3.11. Suppose f(X) has continuous second partials on Ω. If
Hf(X) is positive semidefinite (resp. positive definite) for all X ∈ Ω, then
f is convex (resp. strictly convex).
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Proof. Taylor’s Theorem gives

f(Y ) = f(X) +∇f(X) • (Y −X) +
1

2
(Y −X) •Hf(Z)(Y −X).

By hypothesis,
f(Y ) ≥ f(X) +∇f(X) • (Y −X),

so f is convex by the previous result.

Here are ways to see that a function is convex. Notice that (d) can use
differentiable functions to produce nondifferentiable functions.

Theorem 1.3.12. Suppose Ω ⊂ RN is convex and fk : Ω → R are convex
functions.

(a) f1(X) + · · ·+ fK(X) is convex, and if at least one function is strictly
convex, so is the sum.

(b) If α > 0, then αfk(X) is convex.
(c) If f is (strictly) convex and g is a (strictly) increasing convex function

on the range of f , then g(f(X)) is (strictly) convex.
(d) The function g(X) = max f1(X), . . . , fK(X) is convex.

Proof. (a) By induction it is sufficient to check

f1(tX+(1−t)Y )+f2(tX+(1−t)Y ) ≤ tf1(X)+(1−t)f1(Y )+tf2(X)+(1−t)f2(Y )

= t[f1 + f2](X) + (1− t)[f1 + f2](Y ).

(b) easy
(c) The hypotheses give

f(tX + (1− t)Y ) ≤ tf(X) + (1− t)f(Y ),

and

g(f(tX + (1− t)Y )) ≤ g(tf(X) + (1− t)f(Y )) ≤ tg(f(X)) + (1− t)g(f(Y )).

(d) Fixing t,X, Y , there is some k such that

g(tX + (1− t)Y ) = fk(tX + (1− t)Y ) ≤ tfk(X) + (1− t)fk(Y )

≤ tmax
k
fk(X) + (1− t) max

k
fk(Y ) = tg(X) + (1− t)g(Y ).
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Examples:

1) f(x1, x2, x3) = exp(x21 + x22 + x23),

2) For fixed vectors Ak ∈ RN , and ck > 0,

f(X) =
∑
k

ck exp(Ak •X).


