Math 4130/5130 Homework 6

3.B \# 5 Give an example of a linear map $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ such that $\operatorname{range}(T)=(T)$.

Let e_{1}, \ldots, e_{4} denote the standard basis vectors for \mathbb{R}^{4}. Define T by

$$
T e_{1}=e_{3}, \quad T e_{2}=e_{4}, \quad T e_{3}=0, \quad T e_{4}=0
$$

3.B \# 6 Prove that there does not exist a linear map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ such that $\operatorname{range}(T)=(T)$.

Use the fact that $5=\operatorname{dim}\left(\mathbb{R}^{5}\right)=\operatorname{dim}(\operatorname{null}(T))+\operatorname{dim}(\operatorname{range}(T))$. If $\operatorname{range}(T)=\operatorname{null}(T)$ then their dimensions would be the same and we would have 5 as an even number.
3.B \# 11 Suppose S_{1}, \ldots, S_{N} are injective linear maps such that $S_{1} S_{2} \cdots S_{N}$ makes sense. Prove that $S_{1} S_{2} \cdots S_{N}$ is injective.

By Theorem 3.16 of the text, a linear map T is injective if and only if the null space of T is 0 .

It's probably cleanest to use induction and to flip the indexing, asking if $S_{N} \cdots S_{2} S_{1}$ is injective. In case $N=1$ the map S_{1} is injective by assumption. Suppose the composition of at most N injective maps is injective and

$$
S_{N+1} S_{N} \cdots S_{2} S_{1} v=0
$$

Since S_{N+1} is injective, $S_{N} \cdots S_{2} S_{1} v=0$. But by the induction hypothesis, $S_{N} \cdots S_{2} S_{1}$ is injective, so $v=0$ and $S_{N+1} S_{N} \cdots S_{2} S_{1}$ is injective.
3.B \# 12 Suppose that \mathbb{V} is finite dimensional and that $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$. Prove that there exists a subspace U of \mathbb{V} such that $U \cap \operatorname{null}(T)=\{0\}$ and range $(T)=\{T u: u \in U\}$.

First pick a basis $\left(w_{1}, \ldots, w_{J}\right)$ for null (T). Extend this to a basis

$$
\left(w_{1}, \ldots, w_{J}, u_{1}, \ldots, u_{K}\right)
$$

for \mathbb{V}. Define $U=\operatorname{span}\left(u_{1}, \ldots, u_{K}\right)$.
First notice that if $v \in U \cap \operatorname{null}(T)$, then

$$
v=\sum_{k} \alpha_{k} u_{k}=\sum_{j} \beta_{j} w_{j}
$$

Rewriting this, we have

$$
0=\sum_{k} \alpha_{k} u_{k}-\sum_{j} \beta_{j} w_{j},
$$

and the linear independence of $\left(w_{1}, \ldots, w_{J}, u_{1}, \ldots, u_{K}\right)$ implies $\alpha_{k}=\beta_{j}=0$. Thus $v=0$, and $U \cap$ null $T=\{0\}$.

Finally, any $v \in \mathbb{V}$ can be written as

$$
v=\sum_{j} \beta_{j} w_{j}+\sum_{k} \alpha_{k} u_{k},
$$

so

$$
T v=\sum_{j} \beta_{j} T w_{j}+\sum_{k} \alpha_{k} T u_{k}=T\left(\sum_{k} \alpha_{k} u_{k}\right),
$$

showing that range $T=\{T u: u \in U\}$.
3.C \# 2 Find bases for \mathcal{P}_{3} and \mathcal{P}_{2} such that the matrix for $p \rightarrow p^{\prime}$ is

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Let the basis for \mathcal{P}_{3} be $z^{3}, z^{2}, z, 1$ and the basis for \mathcal{P}_{2} be $3 z^{2}, 2 z, 1$.
3.C \# 3 Suppose \mathbb{V} and \mathbb{W} are finite dimensional and $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$. Prove there is a basis $\left(v_{1}, \ldots, v_{M}\right)$ for \mathbb{V}. and a basis $\left(w_{1}, \ldots, w_{N}\right)$ of \mathbb{W} such that all the entries of $M(T)$ are 0 except for 1 's in the (j, j) entries, which are 1 for $j=1, \ldots, \operatorname{dim}(\operatorname{range}(T))$.

Let $J=\operatorname{dim}(\operatorname{range}(T))$. Start with a basis $\left(u_{J+1}, \ldots, u_{M}\right)$ for the null space of T. Extend this to a basis $\left(v_{1}, \ldots, v_{J}, u_{J+1}, \ldots, u_{M}\right)$ for \mathbb{V}. Let $w_{j}=T v_{j}$ for $j=1, \ldots, J$. Since T is injective on $\operatorname{span}\left(v_{1}, \ldots, v_{J}\right)$, the vectors w_{j} are linearly independent. Now extend this list to a basis for \mathbb{W}.
3. $C \neq 6$ Suppose \mathbb{V} and \mathbb{W} are finite dimensional and $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$. Prove that $\operatorname{dim}(\operatorname{range}(T))=1$ if and only if there are bases for \mathbb{V} and \mathbb{W} such that all entries of $M(T)$ are 1.

Suppose the bases for \mathbb{V} and \mathbb{W} are v_{1}, \ldots, v_{N} and w_{1}, \ldots, w_{M} respectively. Assume first that all entries of $M(T)$ are 1. Then for each basis vector v_{n} we have

$$
T v_{n}=w_{1}+\cdots+w_{M}
$$

and the range of T, which is the span of the T_{n} is one dimensional.
Now assume $\operatorname{dim}(\operatorname{range}(T))=1$. First pick a basis $\left(v_{2}, \ldots, v_{N}\right)$ for the null space of T, and extend it to a basis $\left(v_{1}, v_{2}, \ldots, v_{N}\right)$ for \mathbb{V}. Make a second basis for \mathbb{V} with vectors $u_{1}=v_{1}, u_{n}=v_{n}+v_{1}$ for $n>1$. Then $w=T u_{1} \neq 0$, and $T u_{n}=w$ for each $n=1, \ldots, N$.

Let $w_{1}=w$ and extend the list w_{1} to a basis $\left(w_{1}, \ldots, w_{M}\right)$ for \mathbb{W}. Now define a new basis with $x_{m}=w_{m}$ for $m \geq 2$ and $x_{1}=w_{1}-w_{2}-\cdots-w_{M}$. Then

$$
w=x_{1}+x_{2}+\ldots x_{M}
$$

and the matrix $M(T)$ has all entries equal to 1 .
3. $C \neq 12$ Find 2×2 matrices A and C such that $A C \neq C A$.

Take

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Then

$$
A C=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right), \quad C A=\left(\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right)
$$

3.D \# 1 Suppose $T \in \mathcal{L}(\mathbb{U}, \mathbb{V})$ and $S \in \mathcal{L}(\mathbb{V}, \mathbb{W})$ are both invertible linear maps. Prove that $S T \in \mathcal{L}(\mathbb{U}, \mathbb{W})$ is invertible and $(S T)^{-1}=T^{-1} S^{-1}$.

Notice that $(S T)\left(T^{-1} S^{-1}\right)=I$ and $\left(T^{-1} S^{-1}\right)(S T)=I$. By definition $S T$ is invertible.
3.D \# 7 Suppose $\operatorname{dim}(\mathbb{V})=N$ and $\operatorname{dim}(\mathbb{W})=M$. Let $v \in \mathbb{V}$. Let

$$
E=\{T \in \mathcal{L}(\mathbb{V}, \mathbb{W}): T v=0\}
$$

Show that E is a subspace of $\mathcal{L}(\mathbb{V}, \mathbb{W})$ and find $\operatorname{dim}(E)$ if $v \neq 0$.
If $T_{1} v=0$ and $T_{2} v=0$ then $\left(T_{1}+T_{2}\right) v=0$, and similarly for $\alpha T_{1} v$, so E is a subspace.

If $v \neq 0$, let $v_{1}=v$ and extend the list $\left(v_{1}\right)$ to a basis $\left(v_{1}, \ldots, v_{N}\right)$ for \mathbb{V}. Given $T \in E$, define a linear map T_{1} from $\operatorname{span}\left(v_{2}, \ldots, v_{N}\right)$ to \mathbb{W} by

$$
T_{1} v_{n}=T v_{n}, \quad n \geq 2
$$

This mapping is linear from E to $\mathcal{L}\left(\operatorname{span}\left(v_{2}, \ldots, v_{N}\right), \mathbb{W}\right)$, and has an inverse taking T_{1} to T where

$$
T v_{n}=T_{1} v_{n}, \quad n \geq 2, \quad T v_{1}=0
$$

Thus E and $\mathcal{L}\left(\operatorname{span}\left(v_{2}, \ldots, v_{N}\right), \mathbb{W}\right)$ have the same dimension, $(N-1) \times$ M.
3.D \# 9 Suppose that \mathbb{V} is finite dimensional and $S, T \in \mathcal{L}(\mathbb{V})$. Prove that $S T$ is invertible if and only if both S and T are invertible.

We use Proposition 3.17, which says S is invertible if and only if S is both injective and surjective.

Suppose S and T are invertible. Then S and T are both injective and surjective, so $S T$ is injective (problem 3.6) and $S T$ is surjective. Thus $S T$ is invertible

Suppose $S T$ is invertible. Since null $T \subset$ null $S T=\{0\}, T$ is injective. By Theorem 3.21, T is invertible.

Also, since $S T$ is invertible, it is surjective. That is, for any $w \in \mathbb{V}$ there is a $v \in \mathbb{V}$ such that

$$
(S T) v=w
$$

Rewriting this as $S(T v)=w$ we see that S is surjective. By Theorem 3.21, S is invertible.
3.D \# 10 Suppose that \mathbb{V} is finite dimensional and $S, T \in \mathcal{L}(\mathbb{V})$. Prove that $S T=I$ if and only if $T S=I$.

Suppose that $S T=I$. The identity map I is invertible, so by problem 3.22 both S and T are invertible. Multiply $S T=I$ on the right by T^{-1} to get $S=T^{-1}$. We then have

$$
T T^{-1}=T S=I
$$

Of course the implication $T S=I$ implies $S T=I$ follows by reversing the roles of S and T.

