
Math 4130/5130 Homework 6

3.B # 5 Give an example of a linear map T : R4 → R4 such that
range(T ) = (T ).

Let e1, . . . , e4 denote the standard basis vectors for R4. Define T by

Te1 = e3, T e2 = e4, T e3 = 0, T e4 = 0.

3.B # 6 Prove that there does not exist a linear map T : R5 → R5 such
that range(T ) = (T ).

Use the fact that 5 = dim(R5) = dim(null(T )) + dim(range(T )). If
range(T ) = null(T ) then their dimensions would be the same and we would
have 5 as an even number.

3.B # 11 Suppose S1, . . . , SN are injective linear maps such that S1S2 · · ·SN

makes sense. Prove that S1S2 · · ·SN is injective.
By Theorem 3.16 of the text, a linear map T is injective if and only if the

null space of T is 0.
It’s probably cleanest to use induction and to flip the indexing, asking if

SN · · ·S2S1 is injective. In case N = 1 the map S1 is injective by assumption.
Suppose the composition of at most N injective maps is injective and

SN+1SN · · ·S2S1v = 0.

Since SN+1 is injective, SN · · ·S2S1v = 0. But by the induction hypothesis,
SN · · ·S2S1 is injective, so v = 0 and SN+1SN · · ·S2S1 is injective.

3.B # 12 Suppose that V is finite dimensional and that T ∈ L(V,W).
Prove that there exists a subspace U of V such that U ∩ null(T ) = {0} and
range(T ) = {Tu : u ∈ U}.

First pick a basis (w1, . . . , wJ) for null(T ). Extend this to a basis

(w1, . . . , wJ , u1, . . . , uK)

for V. Define U = span(u1, . . . , uK).
First notice that if v ∈ U ∩ null(T ), then

v =
∑
k

αkuk =
∑
j

βjwj.
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Rewriting this, we have

0 =
∑
k

αkuk −
∑
j

βjwj,

and the linear independence of (w1, . . . , wJ , u1, . . . , uK) implies αk = βj = 0.
Thus v = 0, and U ∩ nullT = {0}.

Finally, any v ∈ V can be written as

v =
∑
j

βjwj +
∑
k

αkuk,

so
Tv =

∑
j

βjTwj +
∑
k

αkTuk = T (
∑
k

αkuk),

showing that rangeT = {Tu : u ∈ U}.

3.C # 2 Find bases for P3 and P2 such that the matrix for p→ p′ is1 0 0 0
0 1 0 0
0 0 1 0

 .

Let the basis for P3 be z3, z2, z, 1 and the basis for P2 be 3z2, 2z, 1.

3.C # 3 Suppose V and W are finite dimensional and T ∈ L(V,W).
Prove there is a basis (v1, . . . , vM) for V. and a basis (w1, . . . , wN) of W
such that all the entries of M(T ) are 0 except for 1′s in the (j, j) entries,
which are 1 for j = 1, . . . , dim(range(T )).

Let J = dim(range(T )). Start with a basis (uJ+1, . . . , uM) for the null
space of T . Extend this to a basis (v1, . . . , vJ , uJ+1, . . . , uM) for V. Let
wj = Tvj for j = 1, . . . , J . Since T is injective on span(v1, . . . , vJ), the
vectors wj are linearly independent. Now extend this list to a basis for W.

3.C # 6 Suppose V and W are finite dimensional and T ∈ L(V,W).
Prove that dim(range(T )) = 1 if and only if there are bases for V and W
such that all entries of M(T ) are 1.

Suppose the bases for V and W are v1, . . . , vN and w1, . . . , wM respec-
tively. Assume first that all entries of M(T ) are 1. Then for each basis
vector vn we have

Tvn = w1 + · · ·+ wM ,
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and the range of T , which is the span of the Tn is one dimensional.
Now assume dim(range(T )) = 1. First pick a basis (v2, . . . , vN) for the

null space of T , and extend it to a basis (v1, v2, . . . , vN) for V. Make a second
basis for V with vectors u1 = v1, un = vn + v1 for n > 1. Then w = Tu1 6= 0,
and Tun = w for each n = 1, . . . , N .

Let w1 = w and extend the list w1 to a basis (w1, . . . , wM) for W. Now
define a new basis with xm = wm for m ≥ 2 and x1 = w1 − w2 − · · · − wM .
Then

w = x1 + x2 + . . . xM ,

and the matrix M(T ) has all entries equal to 1.

3.C # 12 Find 2× 2 matrices A and C such that AC 6= CA.
Take

A =

(
1 0
0 2

)
, C =

(
1 1
0 1

)
.

Then

AC =

(
1 1
0 2

)
, CA =

(
1 2
0 2

)
.

3.D # 1 Suppose T ∈ L(U,V) and S ∈ L(V,W) are both invertible linear
maps. Prove that ST ∈ L(U,W) is invertible and (ST )−1 = T−1S−1.

Notice that (ST )(T−1S−1) = I and (T−1S−1)(ST ) = I. By definition ST
is invertible.

3.D # 7 Suppose dim(V) = N and dim(W) = M . Let v ∈ V. Let

E = {T ∈ L(V,W) : Tv = 0}.

Show that E is a subspace of L(V,W) and find dim(E) if v 6= 0.
If T1v = 0 and T2v = 0 then (T1 + T2)v = 0, and similarly for αT1v, so E

is a subspace.
If v 6= 0, let v1 = v and extend the list (v1) to a basis (v1, . . . , vN) for V.

Given T ∈ E, define a linear map T1 from span(v2, . . . , vN) to W by

T1vn = Tvn, n ≥ 2.

This mapping is linear from E to L(span(v2, . . . , vN),W), and has an
inverse taking T1 to T where

Tvn = T1vn, n ≥ 2, T v1 = 0.
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Thus E and L(span(v2, . . . , vN),W) have the same dimension, (N − 1)×
M .

3.D # 9 Suppose that V is finite dimensional and S, T ∈ L(V). Prove
that ST is invertible if and only if both S and T are invertible.

We use Proposition 3.17, which says S is invertible if and only if S is both
injective and surjective.

Suppose S and T are invertible. Then S and T are both injective and
surjective, so ST is injective (problem 3.6) and ST is surjective. Thus ST is
invertible

Suppose ST is invertible. Since nullT ⊂ nullST = {0}, T is injective. By
Theorem 3.21, T is invertible.

Also, since ST is invertible, it is surjective. That is, for any w ∈ V there
is a v ∈ V such that

(ST )v = w.

Rewriting this as S(Tv) = w we see that S is surjective. By Theorem 3.21,
S is invertible.

3.D # 10 Suppose that V is finite dimensional and S, T ∈ L(V). Prove
that ST = I if and only if TS = I.

Suppose that ST = I. The identity map I is invertible, so by problem
3.22 both S and T are invertible. Multiply ST = I on the right by T−1 to
get S = T−1. We then have

TT−1 = TS = I.

Of course the implication TS = I implies ST = I follows by reversing
the roles of S and T .
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