Math 4130/5130 Homework 6

3.B # 5 Give an example of a linear map $T : \mathbb{R}^4 \to \mathbb{R}^4$ such that range(T) = (T).

Let e_1, \ldots, e_4 denote the standard basis vectors for \mathbb{R}^4 . Define T by

$$Te_1 = e_3, \quad Te_2 = e_4, \quad Te_3 = 0, \quad Te_4 = 0.$$

3.B # 6 Prove that there does not exist a linear map $T : \mathbb{R}^5 \to \mathbb{R}^5$ such that range(T) = (T).

Use the fact that $5 = dim(\mathbb{R}^5) = dim(null(T)) + dim(range(T))$. If range(T) = null(T) then their dimensions would be the same and we would have 5 as an even number.

3.B # 11 Suppose S_1, \ldots, S_N are injective linear maps such that $S_1S_2 \cdots S_N$ makes sense. Prove that $S_1S_2 \cdots S_N$ is injective.

By Theorem 3.16 of the text, a linear map T is injective if and only if the null space of T is 0.

It's probably cleanest to use induction and to flip the indexing, asking if $S_N \cdots S_2 S_1$ is injective. In case N = 1 the map S_1 is injective by assumption. Suppose the composition of at most N injective maps is injective and

$$S_{N+1}S_N\cdots S_2S_1v=0.$$

Since S_{N+1} is injective, $S_N \cdots S_2 S_1 v = 0$. But by the induction hypothesis, $S_N \cdots S_2 S_1$ is injective, so v = 0 and $S_{N+1} S_N \cdots S_2 S_1$ is injective.

3.B # 12 Suppose that \mathbb{V} is finite dimensional and that $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$. Prove that there exists a subspace U of \mathbb{V} such that $U \cap \operatorname{null}(T) = \{0\}$ and $\operatorname{range}(T) = \{Tu : u \in U\}$.

First pick a basis (w_1, \ldots, w_J) for null(T). Extend this to a basis

$$(w_1,\ldots,w_J,u_1,\ldots,u_K)$$

for \mathbb{V} . Define $U = \operatorname{span}(u_1, \ldots, u_K)$.

First notice that if $v \in U \cap \operatorname{null}(T)$, then

$$v = \sum_{k} \alpha_k u_k = \sum_{j} \beta_j w_j.$$

Rewriting this, we have

$$0 = \sum_{k} \alpha_k u_k - \sum_{j} \beta_j w_j,$$

and the linear independence of $(w_1, \ldots, w_J, u_1, \ldots, u_K)$ implies $\alpha_k = \beta_j = 0$. Thus v = 0, and $U \cap \text{null}T = \{0\}$.

Finally, any $v \in \mathbb{V}$ can be written as

$$v = \sum_{j} \beta_{j} w_{j} + \sum_{k} \alpha_{k} u_{k},$$

 \mathbf{SO}

$$Tv = \sum_{j} \beta_{j} Tw_{j} + \sum_{k} \alpha_{k} Tu_{k} = T(\sum_{k} \alpha_{k} u_{k}),$$

showing that range $T = \{Tu : u \in U\}.$

3. C # 2 Find bases for \mathcal{P}_3 and \mathcal{P}_2 such that the matrix for $p \to p'$ is

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Let the basis for \mathcal{P}_3 be $z^3, z^2, z, 1$ and the basis for \mathcal{P}_2 be $3z^2, 2z, 1$.

3.C # 3 Suppose \mathbb{V} and \mathbb{W} are finite dimensional and $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$. Prove there is a basis (v_1, \ldots, v_M) for \mathbb{V} . and a basis (w_1, \ldots, w_N) of \mathbb{W} such that all the entries of M(T) are 0 except for 1's in the (j, j) entries, which are 1 for $j = 1, \ldots, \dim(range(T))$.

Let J = dim(range(T)). Start with a basis (u_{J+1}, \ldots, u_M) for the null space of T. Extend this to a basis $(v_1, \ldots, v_J, u_{J+1}, \ldots, u_M)$ for \mathbb{V} . Let $w_j = Tv_j$ for $j = 1, \ldots, J$. Since T is injective on $span(v_1, \ldots, v_J)$, the vectors w_j are linearly independent. Now extend this list to a basis for \mathbb{W} .

3. $C \notin 6$ Suppose \mathbb{V} and \mathbb{W} are finite dimensional and $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$. Prove that dim(range(T)) = 1 if and only if there are bases for \mathbb{V} and \mathbb{W} such that all entries of M(T) are 1.

Suppose the bases for \mathbb{V} and \mathbb{W} are v_1, \ldots, v_N and w_1, \ldots, w_M respectively. Assume first that all entries of M(T) are 1. Then for each basis vector v_n we have

$$Tv_n = w_1 + \dots + w_M,$$

and the range of T, which is the span of the T_n is one dimensional.

Now assume dim(range(T)) = 1. First pick a basis (v_2, \ldots, v_N) for the null space of T, and extend it to a basis (v_1, v_2, \ldots, v_N) for \mathbb{V} . Make a second basis for \mathbb{V} with vectors $u_1 = v_1$, $u_n = v_n + v_1$ for n > 1. Then $w = Tu_1 \neq 0$, and $Tu_n = w$ for each $n = 1, \ldots, N$.

Let $w_1 = w$ and extend the list w_1 to a basis (w_1, \ldots, w_M) for \mathbb{W} . Now define a new basis with $x_m = w_m$ for $m \ge 2$ and $x_1 = w_1 - w_2 - \cdots - w_M$. Then

$$w = x_1 + x_2 + \dots x_M,$$

and the matrix M(T) has all entries equal to 1.

3.C # 12 Find 2×2 matrices A and C such that $AC \neq CA$. Take

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Then

$$AC = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \quad CA = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}.$$

3.D # 1 Suppose $T \in \mathcal{L}(\mathbb{U}, \mathbb{V})$ and $S \in \mathcal{L}(\mathbb{V}, \mathbb{W})$ are both invertible linear maps. Prove that $ST \in \mathcal{L}(\mathbb{U}, \mathbb{W})$ is invertible and $(ST)^{-1} = T^{-1}S^{-1}$.

Notice that $(ST)(T^{-1}S^{-1}) = I$ and $(T^{-1}S^{-1})(ST) = I$. By definition ST is invertible.

3.D # 7 Suppose $dim(\mathbb{V}) = N$ and $dim(\mathbb{W}) = M$. Let $v \in \mathbb{V}$. Let

$$E = \{T \in \mathcal{L}(\mathbb{V}, \mathbb{W}) : Tv = 0\}.$$

Show that E is a subspace of $\mathcal{L}(\mathbb{V}, \mathbb{W})$ and find $\dim(E)$ if $v \neq 0$.

If $T_1v = 0$ and $T_2v = 0$ then $(T_1 + T_2)v = 0$, and similarly for αT_1v , so E is a subspace.

If $v \neq 0$, let $v_1 = v$ and extend the list (v_1) to a basis (v_1, \ldots, v_N) for \mathbb{V} . Given $T \in E$, define a linear map T_1 from $span(v_2, \ldots, v_N)$ to \mathbb{W} by

$$T_1 v_n = T v_n, \quad n \ge 2.$$

This mapping is linear from E to $\mathcal{L}(span(v_2, \ldots, v_N), \mathbb{W})$, and has an inverse taking T_1 to T where

$$Tv_n = T_1v_n, \quad n \ge 2, \quad Tv_1 = 0$$

Thus E and $\mathcal{L}(span(v_2, \ldots, v_N), \mathbb{W})$ have the same dimension, $(N-1) \times M$.

3.D # 9 Suppose that \mathbb{V} is finite dimensional and $S, T \in \mathcal{L}(\mathbb{V})$. Prove that ST is invertible if and only if both S and T are invertible.

We use Proposition 3.17, which says S is invertible if and only if S is both injective and surjective.

Suppose S and T are invertible. Then S and T are both injective and surjective, so ST is injective (problem 3.6) and ST is surjective. Thus ST is invertible

Suppose ST is invertible. Since null $T \subset$ null $ST = \{0\}, T$ is injective. By Theorem 3.21, T is invertible.

Also, since ST is invertible, it is surjective. That is, for any $w\in\mathbb{V}$ there is a $v\in\mathbb{V}$ such that

(ST)v = w.

Rewriting this as S(Tv) = w we see that S is surjective. By Theorem 3.21, S is invertible.

3.D # 10 Suppose that \mathbb{V} is finite dimensional and $S, T \in \mathcal{L}(\mathbb{V})$. Prove that ST = I if and only if TS = I.

Suppose that ST = I. The identity map I is invertible, so by problem 3.22 both S and T are invertible. Multiply ST = I on the right by T^{-1} to get $S = T^{-1}$. We then have

$$TT^{-1} = TS = I.$$

Of course the implication TS = I implies ST = I follows by reversing the roles of S and T.