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Abstract—In vehicular networks, each message is signed by
the generating node to ensure accountability for the contents of
that message. For privacy reasons, each vehicle uses a collection
of certificates, which for accountability reasons are linked at a
central authority. One such design is the Security Credential
Management System (SCMS) [1], which is the leading credential
management system in the US. The SCMS is composed of
multiple components, each of which has a different task for
key management, which are logically separated. The SCMS is
designed to ensure privacy against a single insider compromise,
or against outside adversaries. In this paper, we demonstrate
that the current SCMS design fails to achieve its design goal,
showing that a compromised authority can gain substantial
information about certificate linkages. We propose a solution that
accommodates threshold-based detection, but uses relabeling and
noise to limit the information that can be learned from a single
insider adversary. We also analyze our solution using techniques
from differential privacy and validate it using traffic-simulator
based experiments. Our results show that our proposed solution
prevents privacy information leakage against the compromised
authority in collusion with outsider attackers.

I. INTRODUCTION

Real-world deployment of Vehicular Ad Hoc Networks
(VANETs) [2]–[5] is becoming a reality; for example, the
National Highway Traffic Safety Administration (NHTSA)
has announced its plan to deploy VANET by 2020 [6]. To
ensure message integrity and message authentication, IEEE Std
1609.2-2013 [7] and ETSI TS 102 941 v1.1.1 [8] specifies
the deployment of a Public Key Infrastructure (PKI) based
on asymmetric cryptography. In 2013, the Security Credential
Management System (SCMS) [1] was proposed by the United
States Department of Transportation (USDoT) and the Crash
Avoidance Metrics Partnership (CAMP) and is the leading
candidate design for the V2V security infrastructure in the
US. Unlike traditional PKIs, the SCMS needs to support 300
million vehicles and efficiently revoke certificates. The design
of the SCMS is to provide pseudonym certificates [9]–[14] to
support Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communications. In VANET, vehicles communicate with
each other by exchanging Basic Safety Messages (BSM),
which include the vehicle’s information such as its position,
velocity, acceleration and so on to enhance transportation
safety and efficiency. Each BSM transmission is signed by
a pseudonym certificate to prevent attackers from disseminating
false messages that mislead benign vehicles. Once the vehicle
receives the BSM, it verifies the validity of the signature and

ensures the certificate has not been placed on the Certificate
Revocation List (CRL). To avoid being tracked, the vehicle
switches pseudonym certificates frequently, perhaps every 5
minutes, to protect users’ privacy.

The goal of the SCMS is to manage pseudonym certificates in
a way that balances privacy with accountability. Outsider attacks
are addressed using pseudonym certificates, while insider attacks
are limited by dividing the SCMS into multiple components
such that no single component has complete information for
certificate linkage. To ensure accountability, however, the SCMS
must be able to perform efficient certificate revocation to
eradicate misbehaving or malicious vehicle from vehicular
networks. A vehicle is considered misbehaving if it sends
information identified as false by the detection mechanism [15]–
[17]. The revocation process requires a device’s pseudonyms to
be linked in order to hold the misbehaving vehicles accountable.
In this paper, we identify a privacy vulnerability of the SCMS
when the Misbehavior Authority (MA) is compromised; the MA
is in charge of misbehavior detection and certificate revocation,
but as a single point of failure in the SCMS design, violates
the design principle of privacy in the presence of insider
compromise.

In VANET, safety messages are classified as Beacon and
Alert messages [18], [19]. Some messages are obviously wrong,
(for example, driving at 600 miles per hour), and the MA
can revoke such a vehicle simply by observing the Beacon.
Other attacks are not as readily ascertained, but the MA can
aggregate information across multiple reports and revoke the
offending vehicle. Depending on the ease of attribution, the
procedure to process misbehavior reports is different. For
obvious violations, the MA directly revokes the offender’s
certificate. For violations that require more information, the
MA has to record and calculate the number of accusers and
misbehaviors, then determine which vehicle is misbehaving and
revoke its certificate. Unfortunately, the current design does not
specify the procedure for revoking vehicles in the latter case.

In our work, we consider both cases: 1) misbehavior that
is readily caught; and 2) misbehavior for which evidence
is gathered over time. We now illustrate how an MA can
compromise a user’s privacy using mechanisms for catching
the latter type of misbehavior. Figure 1(a) represents the
misbehavior reports received by the MA. Each misbehavior
report includes a signed BSM from a misbehaving vehicle.
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These reports are aggregated as a directed graph that captures
the accusers and accused; e.g., Alice accuses Bob in the leftmost
pair. This graph is a pseudonym-level graph; because a vehicle
can switch pseudonyms, the MA cannot determine the mapping
from the pseudonym-level graph to the node-level graph. For
illustrative purposes, we label each pseudonym in Figure 1(a)
such that the first letter of the pseudonym is vehicle’s real
identity. In this case, the misbehavior reports could be converted
into the vehicle identity graph shown in Figure 1(b). Once a
vehicle is accused by a threshold number of vehicles, it is
considered to be misbehaving; for example, when the threshold
is 2, only node C’s certificates will be revoked. Unfortunately, in
the present SCMS design, the process to resolve a pseudonym-
level graph to a node-level graph is not specifically regulated,
and consequently leaks information about innocent vehicle
identity to the MA.
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Figure 1: (a) Misbehavior reports. (b) Vehicle identity graph.

A well-defined revocation process for vehicular networks
requires a delicate balance between privacy and accountability;
a vehicle remains anonymous until misbehavior is detected,
and only the misbehaving vehicles’ pseudonyms certificates
are linked and revoked. In this paper, we analyze the privacy
information leakage under two threat models: a passive MA
(honest-but-curious) and an active MA (injecting accusations).
We show that in the current design, the MA can learn substantial
linkage information through the pseudonym resolution process.
We then design a revised scheme that offloads certain compo-
nents of misbehavior detection to another entity. Our revised
scheme is privacy-preserving under a single malicious authority,
and uses re-labeling and differential privacy to protect privacy.
Our scheme also preserves utility, a critical metric that drives
misbehavior detection, and thus does not affect the outcome of
the MA’s operations of misbehavior detection and certificate
revocation. We define utility to be the correct revocation of
misbehaving vehicle certificates.

Our contributions in this paper can be summarized as follows:
• Explore a privacy vulnerability of the SCMS
• Present a privacy-preserving scheme compatible with the

SCMS
• Conduct a simulation analysis to validate the effectiveness

of our scheme

The remainder of the paper is organized as follows. In
Section II, we provide a brief description of the SCMS and
describe misbehavior revocation. Section III defines the threat
model. In Section IV, we propose our approach and present
the simulation results in V. Finally, Section VI concludes the
paper.

II. BACKGROUND

Security and privacy protection in VANET is an active
area of research. In currently envisioned VANET protocols,
cryptographic signatures and certificates provide accountability
and authorization. To limit the ability to track vehicles through
their VANET communications, pseudonym certificates have
been proposed for user privacy protection [13]. Strategies for
changing pseudonyms is also necessary [11], as attackers can
link multiple pseudonyms to the real identity and track the
vehicle [9], [20]. Current VANET specifications require each
vehicle to maintain a pool of pseudonyms, and frequently change
the pseudonym in use. One challenging problem is to efficiently
manage these pseudonyms such that they can be revoked if
the node misbehaves; the task of such management falls on a
credential management system.

The Security Credential Management System (SCMS) has
been proposed by the USDoT and the CAMP, an industry
consortium. The interactions between the components in the
SCMS architecture are performed automatically, without human
intervention. The SCMS supports all basic PKI functions, while
adopting a logical, administrative separation that defends against
a single insider adversary. The SCMS design relies on the
existing pseudonym certificate scheme to ensure privacy from
outsider attackers. Furthermore, the SCMS is responsible for
misbehavior detection and certificate revocation.

A. SCMS components

Figure 2 describes the SCMS architecture. For brevity, we
focus our discussions on the SCMS components that are
involved in misbehavior detection and certificate revocation,
since our work focuses on these aspects; the interested reader
can learn about other components from the paper [1].

• Misbehavior Authority (MA) – processes misbehavior
reports to determine misbehaving vehicles based on
a global misbehavior detection mechanism (still being
developed). Once a vehicle is determined as misbehaving,
the MA begins the revocation process. First, it revokes the
enrollment certificate1 by adding the enrollment certificate
to the blacklist, so the vehicle is not able to obtain
new pseudonym certificates. Further, the MA asks for
linkage information to update the Certificate Revocation
List (CRL); once the CRL is disseminated, legitimate
vehicles can ignore the newly revoked vehicle.

• Linkage Authority (LA) – maintains linkage values that
can link together multiple certificates from the same
vehicle. The Linkage Authority functionality is divided

1Due to limited storage on the vehicles, each vehicle maintains certificates
for a limited time, and uses its enrollment certificate to obtain future certificates.
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Figure 2: The SCMS architecture adapted from [1].

between two administrative entities, such that no single
entity can definitively link two certificates. The LA
interacts with the MA for pseudonym resolution.

• Registration Authority (RA) – receives and validates re-
quests for vehicle devices’ pseudonym and, upon validation,
forwards them to the PCA.

• Pseudonym Certificate Authority (PCA) – issues short-
lived pseudonyms as requested by the RA, but does not
know the identity of the corresponding vehicle.

• Location Obscurer Proxy (LOP) – all communications
between deployed vehicles and the SCMS system transits
the LOP, which removes network address information (such
as IP addresses) from communications between a vehicle
and the SCMS system, and shuffles messages to reduce
information leakage from timing.

A design goal of the SCMS is that pseudonyms cannot be
linked even in the presence of one malicious authority. For
example, in pseudonym generation, the RA does not know
which pseudonym certificates correspond to which request
and the PCA does not know which request corresponds to
which vehicle; in linking, there are multiple LAs. However, for
accountability, the MA is able to perform pseudonym resolution
and certificate revocation. Each pseudonym certificate includes
a linkage value as shown in Figure 3, which is generated
from PCA by the pre-linkage value. The pre-linkage value is
calculated by the LA through the linkage seed. The MA can
submit two individual requests to the PCA and the LA to obtain
linkage information (e.g., linkage seed), which allows the MA
to link multiple certificates to the same vehicle. The pseudonym
resolution is described in detail in Appendix A.

After the MA obtains linkage information for vehicle identity
resolution, the MA can run the Misbehavior Detection Scheme
to decide which vehicle device needs to be revoked. However,
no one supervises the MA’s requests for linkage information.
Furthermore, the MA has sole authority for certificate revocation,
which allows the MA revoke a certificate and cause privacy
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1. Pre-linkage value PCA

Linkage value

LA

Figure 3: Resolve Linkage value to Linkage seed.

loss. In this paper, we focus on the privacy loss from the MA.

B. Misbehavior Detection Scheme

Since there are no published, complete proposals for a
Misbehavior Detection Scheme (MDS), we adopt a simple
threshold-based scheme; if the number of accusations against a
device exceeds a threshold, then we deem the accused to be
misbehaving. Any node can accuse any other node at most one
time. In Figure 4(a), Bill is accused once because pseudonyms
having the same first letter are from the same vehicle. However,
Bill is accused three times in Figure 4(b). By limiting the
number of distinct accusations to one, we can limit the slander
attack where an attacker falsely accuses some nodes many
times. Note that MDS is an active area of research [15]–[17]
and beyond the scope of this paper. So MDS here is used to
address how the certificates are chosen, not for its performance.
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Figure 4: Pseudonym misbehavior counting.

In evaluating our approach, we also consider that outsider
attacks can collude to make false accusations. In the MDS
that we design, we attempt to minimize the impact of false
accusations. Figure 4(c) and Figure 4(d) are the node-level
graphs that the LA generates from the pseudonym-level graph
sent by the MA, Each node in the node-level graph is the linkage
seed. Henceforth, we call the linkage value the pseudonym and
the linkage seed as the identity.

C. Analysis

In our work, we consider the SCMS support for two
modes of misbehavior detection and revocation: vehicles where
violation is immediately apparent, and vehicles where multiple
misbehavior reports are needed to ascertain misbehavior. In the



former case, the MA can examine a misbehavior report and send
the misbehaving certificate to the LA for immediate revocation;
in such cases, the MA can internally verify the correctness of
the misbehavior report. In the latter case, the MA can only
learn information about which nodes are accusing which nodes
through the LA. This means that the LA must return a node-
level graph (or some functional equivalent) in response to a
pseudonym-level graph. However, the node-level graph reveals
the identity of benign vehicles. In the next sections, we only
consider the latter case, since it presents a greater challenge to
ensuring vehicle privacy.

III. ADVERSARY MODELS

In this section, we describe the adversary models used in
this paper and identify a privacy vulnerability of the SCMS
when the MA is compromised.

A. Honest-But-Curious Adversary
One adversary model is an honest-but-curious attacker;

this attacker is a passive attacker that does not violate the
protocol, but is interested in inferring more information from
the revocation process. Because this attack is passive, the MA
does not attempt to insert additional misbehavior reports for
learning. The MA simply observes the node-level graph that the
LA returns in pseudonym resolution, which a non-attacking MA
(or a passive adversary) uses to count the number of accusations
as illustrated in section II-B. Because the LA directly returns
the node-level graph to the MA, which associates with the
linkage seeds, the identity of the well-behaved vehicles are thus
revealed.

B. Malicious Adversary
In contrast to the honest-but-curious adversary, an MA

could also be an active and malicious attacker. This MA
can manipulate the data it sends to the LA to infer more
information, and the MA might revoke a node’s certificates
maliciously, knowing that a few extra revocations will have
minimal system impact. We now illustrate a de-anonymization
strategy that allows the MA to learn vehicle linkage even
if the LA returns linkage information only for misbehaving
vehicles. Given a conviction threshold 3, the MA intentionally
inserts two fake accusations from David and Flora into the
misbehavior reports as shown in Figure 5. The MA can now
learn node B’s linkage seed, since that linkage seed is needed
for revocation; furthermore, the MA can perform this attack an
arbitrary number of times. For this attack, our goal is to design a
defense mechanism to limit the MA’s knowledge while ensuring
that misbehaving nodes can still be revoked. The challenges
include 1) how to prevent the MA from learning information;
and 2) how to be cautious to false accusation from inside
attack. Moreover, we also show such an MA may collude with
outsiders to perform its attack.

IV. APPROACH

In this section, we propose some solutions to limit MA’s
ability and to strengthen system privacy protection.
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Figure 5: De-anonymization attack.

A. Graph Relabeling

We assume that if an MA sends a pseudonym-level accusation
graph to the LA, and receives in response a node-level accusa-
tion graph, that the returned graph is relabeled. Specifically, the
labels in the node-level accusation graph should be random, so
that each label is free of any association with node identity (e.g.,
linkage seed) or with labels from a previous node-level graph.
Furthermore, the order of the nodes in each graph should be
randomized, so that information is leaked only through graph
structure.

Specifically, the MA sends the pseudonym-level graph to
the LA. Then, the LA transforms the pseudonym-level graph
to a node-level graph. Each node in the node-level graph, as
shown in Figure 6(a) is given with a new identifier at random,
and only the LA knows the mapping. The perturbed graph is
called a re-labeled graph as shown in Figure 6(b). Re-labeled
graphs preserves the original graph structure so the MA is
still able to run the MDS on it. Node C is required to be
revoked if the conviction threshold is set to 2, and so is node
2. Then, the MA will make a second query to the LA for node
2’s linkage seed. When the MA requests linkage seeds, the
LA or an additional SCMS entity can verify the validity of
each request by examining the re-labeled graph. Figure 6(c)
illustrates the process of the two-phase query for the MA to
obtain linkage information.

B. Differential privacy

Though graph relabeling leaks information only through
the graph structure, including changes in the graph structure,
the MA can launch a de-anonymization attack by inserting
edges to the accusation graph to infer additional information.
Fundamentally, the graph structure preserves correlations that
allow the MA to infer information.

In addition, common graph perturbation schemes such as k-
anonymization, random walk or isomorphism [21]–[24] cannot
resist an active MA. Because misbehavior detection continues
across time, the MA can insert multiple false edges, observe
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Table I: Misbehavior counting table.

Node A B C D E F
Number of accused 0 1 1 0 1 0

the resulting pseudonym graph, and repeat the process until it
deanonymizes the pseudonyms being observed.

We propose that the entire Misbehavior Detection Scheme is
executed at the LA, which returns the tabular data rather than the
graph data to the MA. The tabular data should include a random
identifier for each node, and the number of times that node has
been accused, as shown in Table I. Furthermore, to limit an
active MA’s ability to learn based on changes in this table from
query to query, we perturb the data by differential privacy. Then,
the LA returns the tabular data to the MA, which determines
the nodes of interest. Finally, the MA requests linkage seeds
to finish the revocation process. Differential privacy gives a
strong guarantee that the statistical information of the released
database is nearly the same, whether a single record is in the
database or not. Therefore, the participant’s privacy is protected
and its information can not be learned.

Definition 1 (Differential privacy [25], [26]): A randomized
mechanism A maintains ✏-differential privacy if for any datasets
D1 and D2 differing on a single record, and for any possible
sanitized datasets S 2 Range(A),

Pr[A(D1) = S]  e✏ ⇥ Pr[A(D2) = S] (1)

where the probability is taken over the randomness of A. The
parameter ✏ is called the privacy budget.

Definition 2 (Global sensitivity): Let f be a query function
which maps database D to the statistical information in real
numbers. For any function f : D ! Rd, the sensitivity of f is

SG(f) = max

D1�D2=1
kf(D1)� f(D2)k1 (2)

where D1�D2 = 1 represents for all adjacent databases
differing in at most one record. Smaller sensitivities result in
less distortion. For example, if the query is a counting function,
such as how many records in the database have property p, the
sensitivity SG(f) is 1 because the removal or addition of a
single record only affects the result by 1. The sensitivity depends
on the query function. One of the techniques that provides
differential privacy is the use of the Laplace mechanism. Noise
is generated by Laplace distribution and is added to the value
of the query function f . The probability density function of
Laplace distribution is

p(x;�) =
1

2�
exp

✓
� |x|

�

◆
(3)

where � =

SG(f)
✏ .

Theorem 1 (Laplace mechanism): For any function f : D !
Rd, the computation is

A(D) = f(D) + Lap(
SG(f)

✏
)

d (4)

and maintains differential privacy. Note that if � is increasing,
based on the Laplace distribution the Lap(SG(f)

✏ ) curve is
flatter, which results in higher noise.

C. Detection of collusion attacks

In Section IV-B, we introduce differential privacy to use noise
in the tabular data to reduce the MA’s ability to learn. However,
this scheme does not satisfy the Misbehavior Detection Scheme
design requirements discussed in Section II-B, because simply
counting misbehaviors is not reliable; in particular, the identities
of the accusing nodes may impact collusion detection at the
MDS. The relabeled graph preserves the graph structure and
correlations, which is useful for detecting collusion attacks.
When the LA returns the tabular data, it should filter out false
accusations from colluding attackers so the MA can ignore
such false accusations.

Now we discuss our scheme to detect collusion attacks.
Figure 7 is the out-degree distribution of the accusers from our
simulation, which will be described in detail in Section V. The
level of correlation represents the attacker’s collusion group
size and the level of accusation represents the frequency of
attacker accusations. In this example, the attacker does not
collude with other vehicles and the probability of accusation
is 0.05. The malicious vehicle can generate a large number of
false accusations; however, by considering the out-degree of
each node, we can limit the number of false accusations that
the attackers can make.

The accuser is suspicious if its accusation rate is unreasonable.
We use the mean value of the out-degree as the reference to
filter out accusations from suspicious vehicles. In our scheme,
first, the MA provides the accusation graph to the LA. Next,
the LA analyzes the accusation graph and removes accusations
from suspicious vehicles. Then the LA calculates the value
of accusation counting with differential privacy, and returns
the results in tabular form to the MA. The MA can compare



Figure 7: The out-degree distribution of the accusers.

the number of non-suspicious accusations to any detection
threshold. When the MA wishes to revoke a table entry, the
MA provides the LA with the index in the table, and the LA
returns the linkage seed corresponding to that table entry. The
MA then proceeds with revocation as before.

V. EXPERIMENTAL EVALUATION

To analyze the utility of our proposed scheme, we need a
model of the accusation graph structure. We also evaluate the
performance of the collusion attack detection scheme. However,
it is difficult to get the data from actual traffic, especially
because misbehavior detection operates over long periods of
time, on a time scale from weeks to years. For our evaluation,
we use the SUMO [27] road traffic simulation to generate traffic
patterns. Such traces are designed to model human activity, as
opposed to other forms of synthetic traffic generation which
simply randomly generate traffic. Most drivers drive back and
forth from home to office every day, so the probability that two
vehicles will encounter each other is non-uniform. In addition,
each driver also participates in some random activities, such as
visiting, shopping, dining out and so on. Compared to random
traffic, SUMO generates more realistic driver behavior.

A. Simulation settings
We simulate an area with 10000 inhabitants, 2000 households,

and an average of 2.28 cars per household. We run the simula-
tion for 3 weeks to generate trips. In the first experiment, we
generate the accusation graphs for observation. We deploy 5%
malicious vehicles in our simulation scenario. Each malicious
vehicle misbehaves with 1% probability. While a vehicle
misbehaves, it can be detected by each of its neighbors with 1%
probability. Furthermore, we consider a small false positive rate
of 10�5. These parameter settings are summarized in Table II.
Based on this traffic and these probabilities, we generate an
accusation graph. There are a total of 248 accusations as shown
in Figure 8 and the simulation results are summarized in
Table III.

B. Differential Privacy’s Impact on Utility
In this section, we examine the impact of differential privacy

on utility based on the accusation graph we developed through

Table II: Simulation parameters.

Parameter Value
Percentage of malicious vehicle 5%

Probability of misbehavior 1%
Probability of detection 1%

Probability of false accusation 1e-3%

Table III: Results of Experiment 1.

Number of vehicles 14337
Number of trips 66234

Number of malicious vehicle 716
Number of total accusation 248

experiment 1. Differential privacy gives a strong privacy
guarantee, using noise to reduce the amount of information an
attacker can infer, while minimizing the impact on the released
result. Based on the accusation graph in Figure 8, we apply
the differential privacy method on the number of accusations
against each node. As mentioned before, the sensitivity of a
counting query is 1, which results in less noise, or equivalently,
a greater level of privacy for the same amount of noise. The use
of differential privacy ensures that a malicious MA learns only
a bounded amount, even if the MA inserts false accusations.
In order to measure the utility under differential privacy, we
calculate True Positive Rate (TP) and False Positive Rate (FP)
under varying privacy budgets ✏ with fixed conviction threshold
⌧ = 10 and present the results in Table IV. TP is defined as
the number of correctly revoked certificate divided by the total
number of revoked certificates. FP is defined as the number of
incorrectly revoked certificates divided by the total number of
unrevoked certificates. As ✏ increases, � decreases, reducing
the noise magnitude. Because larger privacy budgets reduce
noise, the true positive rate is getting improves and the query
result is more accurate.

Although differential privacy is a powerful tool, the answer
might leak privacy if queries are too frequent. The total privacy
budget is given by ✏ =

P
i ✏i. Normally, when the privacy

budget is exhausted, the user can not make further queries.
However, in the SCMS, each set of pseudonym certificates has
a limited life (usually a few years), and no queries need to
be made regarding a set of pseudonym certificates that have
already expired. Furthermore, our data set varies over time, and
only a single entity (the MA) performs queries; both of these
factors result in a slower privacy leakage than the worst-case
model adopted in differential privacy.

Table IV: Utility vs. ✏.

✏ TP FP
0.1 100.00% 32.66%
0.2 100.00% 14.11%
0.3 100.00% 4.03%
0.4 100.00% 2.02%
0.5 100.00% 1.61%
0.6 100.00% 0.81%
0.7 100.00% 2.02%
0.8 100.00% 0.40%
0.9 100.00% 1.61%
1.0 100.00% 0.00%



Figure 8: 237 positive accusations and 11 false accusations in green.

C. Performance of collusion attack detection
In experiment 2, we evaluate the performance of our scheme

for detecting collusion attack under various attacker behavior.
We use the same parameter settings as our previous experiment
(Table II), and introduce 0.5% (71) colluding attackers. We
explore the attack space across levels of correlation and levels
of accusation. A correlation of k represents that whenever the
attackers wish to accuse a particular vehicle, k attackers work
together on that accusation. The accusation level reflects the
probability of accusation; if the accusation level is 0.01, then
whenever any attacker encounters any vehicle, the attacker has a
1% chance of accusing the other vehicle. Accusation probability
is measured on a per-attacker, per-encounter basis; the number
of BSMs received during any encounter is independent of
the probability of accusation. An attacker that has a higher
accusation probability could potentially cause a larger number
of revocations; however, it also means the colluding attackers
will send many more misbehavior reports and will consequently
be more likely to be caught.

Our simulation shows the performance of attackers that makes
false accusations against innocent vehicles in an attempt to have
them revoked from the system. Figure 9 shows the results
of our simulation runs across various levels of correlation
and accusation. The result shows that at increasing levels of
collusion, more legitimate vehicles are revoked. We varied
the probability with which the legitimate vehicles detected the
misbehaving vehicle, and re-ran various levels of correlation
and accusation, and found similar results as shown in Figure 10;
in particular, higher levels of collusion always results in a more
powerful attack. Table V shows the performance of our proposed
scheme by showing how filtering false accusations varies as
the level of accusation varies from 10

�5 to 0.15 and the level
of correlation from 1 to 30. For this experiment, we choose a
conviction threshold ⌧ = 5 because attacking nodes are rarely
accused (due to our low probability of detection), and because
our simulation covers only three weeks, limiting the number of
times that malicious vehicles are actually accused. In general,
⌧ should be set to balance true positives and false positives.
Because an attacker that wants to revoke many innocent vehicles

will have a abnormally large out-degree, our scheme readily
detects malicious attackers, dramatically reducing the number
of incorrectly revoked certificates. In addition to maintaining
high accuracy, our scheme effectively reduces the threat from
collusion attackers. Note that the true positive rate is low as
the level of accusation is low. The reason is the sophisticated
attacker tries to avoid the detection from the system. In other
words, the system cannot distinguish the malicious attacker
from the out-degree distribution. The misbehavior revocation
procedure, however, is executed periodically. The attacker
cannot be caught at this time, but still be possible to be detected
next time.

Our defense relies on detecting such attacks through the use
of out-degree; unlike other applications users cannot create
many false accounts to launch Sybil attacks Thus, an attacker
that accuses too frequently will be an outlier, and an attacker
that does not accuse very frequently can only affect a small
number of legitimate vehicles.

VI. CONCLUSION

In this paper, we have studied the privacy of the SCMS
and mitigated the problem of an insider attack by a single
adversarial authority. In the existing SCMS design, the MA has
extensive power and knowledge. Furthermore, outside attackers
can collude to cause revocations of legitimate nodes. We propose
an approach that offloads the graph analysis part of misbehavior
detection to the LA so the LA can minimize privacy leakage,
and enforce that the MA does not arbitrarily revoke nodes. In our
scheme, we adopt differential privacy to perturb the data so that
the MA can infer only bounded information from each query.
Our evaluation shows that differential privacy can preserve
privacy while retaining the detection power of the underlying
misbehavior detection scheme. In addition, our scheme is able
to prevent the collusion attack where attackers collude to revoke
legitimate nodes.

VANET is close to actual deployment. It is expected to save
lives from car accidents and provide comfortable and convenient
applications. However, to ensure consumer acceptance, the cer-
tificate authority design must ensure that no single misbehaving
authority can compromise vehicle privacy. Our paper reflects
some of the design problems in the current SCMS proposal,
which we hope will be addressed before deployment.

REFERENCES

[1] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn, “A security credential
management system for v2v communications,” in Vehicular Networking
Conference (VNC), 2013 IEEE, Dec 2013, pp. 1–8.

[2] F. Li and Y. Wang, “Routing in vehicular ad hoc networks: A survey,”
Vehicular Technology Magazine, IEEE, vol. 2, no. 2, pp. 12–22, June
2007.

[3] H. Hartenstein and L. P. Laberteaux, “A tutorial survey on vehicular
ad hoc networks,” IEEE Communications Magazine, vol. 46, no. 6, pp.
164–171, June 2008.

[4] S. Zeadally, R. Hunt, Y.-S. Chen, A. Irwin, and A. Hassan, “Vehicular ad
hoc networks (vanets): status, results, and challenges,” Telecommunication
Systems, vol. 50, no. 4, pp. 217–241, 2010.

[5] M. Khodaei, H. Jin, and P. Papadimitratos, “Towards deploying a scalable
amp; robust vehicular identity and credential management infrastructure,”
in 2014 IEEE Vehicular Networking Conference (VNC), Dec 2014, pp.
33–40.



(a) (b) (c)

Figure 9: Level of threat with various level of correlations and accusations.

(a) (b) (c)

Figure 10: Level of threat with various level of detections and accusations. (Under the level of correlation is 10.)

Table V: The performance of the collusion attack detection scheme.

Correlation
Level of accusation

1e-5 1e-4 1e-3 0.01 0.05 0.1 0.15
TP FP TP FP TP FP TP FP TP FP TP FP TP FP

1 0.00% 0.38% 5.63% 0.38% 84.51% 0.38% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
4 0.00% 0.38% 35.21% 0.38% 98.59% 0.01% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
8 4.23% 0.38% 81.69% 0.38% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

12 2.82% 0.38% 92.96% 0.38% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
15 9.86% 0.38% 84.51% 0.08% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
19 8.45% 0.38% 95.77% 0.08% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
23 18.31% 0.38% 98.59% 0.08% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
26 22.54% 0.38% 98.59% 0.01% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
30 22.54% 0.38% 100.00% 0.01% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

[6] C. Aubernon, “NHTSA Unveils Plan Instituting New V2V Technology
By 2020,” http://www.thetruthaboutcars.com/2014/08/nhtsa-unveils-plan-
instituting-new-v2v-technology-by-2020/, 2014, [2014-08-19].

[7] “Ieee standard for wireless access in vehicular environments - security
services for applications and management messages,” IEEE Std. 1609.2-
2013.

[8] “Intelligent transport systems (its); security; trust and privacy management,”
ETSI TS 102 940 V1.1.1 (2012-06).

[9] E. Fonseca, A. Festag, R. Baldessari, and R. L. Aguiar, “Support of
anonymity in vanets - putting pseudonymity into practice,” in Wireless
Communications and Networking Conference, 2007.WCNC 2007. IEEE,
March 2007, pp. 3400–3405.

[10] A. Studer, E. Shi, F. Bai, and A. Perrig, “Tacking together efficient
authentication, revocation, and privacy in vanets,” in 2009 6th Annual
IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks, June 2009, pp. 1–9.

[11] B. Wiedersheim, Z. Ma, F. Kargl, and P. Papadimitratos, “Privacy in
inter-vehicular networks: Why simple pseudonym change is not enough,”
in Wireless On-demand Network Systems and Services (WONS), 2010
Seventh International Conference on, Feb 2010, pp. 176–183.

[12] J. Haas, Y.-C. Hu, and K. Laberteaux, “Efficient certificate revocation list

organization and distribution,” Selected Areas in Communications, IEEE
Journal on, vol. 29, no. 3, pp. 595–604, March 2011.

[13] J. Petit, F. Schaub, M. Feiri, and F. Kargl, “Pseudonym schemes in
vehicular networks: A survey,” Communications Surveys Tutorials, IEEE,
vol. 17, no. 1, pp. 228–255, Firstquarter 2015.

[14] M. Khodaei and P. Papadimitratos, “The key to intelligent transportation:
Identity and credential management in vehicular communication systems,”
IEEE Vehicular Technology Magazine, vol. 10, no. 4, pp. 63–69, Dec
2015.

[15] M. Raya, P. Papadimitratos, I. Aad, D. Jungels, and J.-P. Hubaux, “Eviction
of misbehaving and faulty nodes in vehicular networks,” Selected Areas
in Communications, IEEE Journal on, vol. 25, no. 8, pp. 1557–1568, Oct
2007.

[16] S. Reidt, M. Srivatsa, and S. Balfe, “The fable of the bees: Incentivizing
robust revocation decision making in ad hoc networks,” in Proceedings
of the 16th ACM Conference on Computer and Communications Security,
ser. CCS ’09. New York, NY, USA: ACM, 2009, pp. 291–302.

[17] S. Ruj, M. Cavenaghi, Z. Huang, A. Nayak, and I. Stojmenovic, “On
data-centric misbehavior detection in vanets,” in Vehicular Technology
Conference (VTC Fall), 2011 IEEE, Sept 2011, pp. 1–5.

[18] F. Bai, H. Krishnan, V. Sadekar, G. Holland, and T. ElBatt, “Towards



characterizing and classifying communication-based automotive appli-
cations from a wireless networking perspective,” in in Proceedings of
IEEE Workshop on Automative Networking and Applications (AUTONET),
2006.

[19] R. Chen, W. L. Jin, and A. Regan, “Broadcasting safety information in
vehicular networks: issues and approaches,” IEEE Network, vol. 24, no. 1,
pp. 20–25, Jan 2010.

[20] M. Wernke, P. Skvortsov, F. Dürr, and K. Rothermel, “A classification of
location privacy attacks and approaches,” Personal Ubiquitous Comput.,
vol. 18, no. 1, pp. 163–175, Jan. 2014.

[21] K. Liu and E. Terzi, “Towards identity anonymization on graphs,” in
Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’08. New York, NY, USA: ACM,
2008, pp. 93–106.

[22] B. Zhou and J. Pei, “The k-anonymity and l-diversity approaches for
privacy preservation in social networks against neighborhood attacks,”
Knowledge and Information Systems, vol. 28, no. 1, pp. 47–77, 2010.

[23] J. Cheng, A. W.-c. Fu, and J. Liu, “K-isomorphism: Privacy preserving
network publication against structural attacks,” in Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’10. New York, NY, USA: ACM, 2010, pp. 459–470.

[24] P. Mittal, C. Papamanthou, and D. X. Song, “Preserving link privacy in
social network based systems,” in NDSS, 2013.

[25] C. Dwork, “Differential privacy,” in 33rd International Colloquium on
Automata, Languages and Programming, part II (ICALP 2006), ser.
Lecture Notes in Computer Science, vol. 4052. Venice, Italy: Springer
Verlag, July 2006, pp. 1–12.

[26] R. Sarathy and K. Muralidhar, “Evaluating laplace noise addition to
satisfy differential privacy for numeric data,” Trans. Data Privacy, vol. 4,
no. 1, pp. 1–17, Apr. 2011.

[27] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements, vol. 5,
no. 3&4, pp. 128–138, December 2012.

APPENDIX

A. Pseudonym resolution

Pseudonym resolution is an important part involved in linking
pseudonym certificates to the vehicle devices. Since no single
component in the SCMS has enough information to track the
certificate, the MA works with the PCA and the LAs to obtain
linkage information for vehicle identity resolution.

The SCMS uses a called linkage value to protect privacy.
When a new pseudonym certificate is created, the linkage
value is associated with the pseudonym certificate for efficient
revocation. In the SCMS, the LA is in charge of generating
linkage values. There are at least two LAs in the system to
limit the information leakage to any single LA. Here we use
two Linkage Authorities LA1 and LA2 as an example to show
how to generate the linkage value. First, before beginning to
generate linkage value, each LA calculates the linkage seed as
follows:

lsi(t) = H(la_idi k lsi(t� 1)) (5)

where i represents the index of the LA, t represents current
time period, H(.) is a one-way non-invertible hash function
and w k v denotes concatenation of strings w and v. la_idi is
a 32-bit identifier of LAi. lsi(0) is a random 128-bits string
as the initial linkage seed picked by LAi and used to calculate
lsi(t). Then the LAi calculates the pre-linkage value as:

plvi(t, j) = E(lsi(t), la_idi k j) (6)

where j represents the index of a set of pseudonym certificates
within that period of time and E(k,m) denotes the encryption
function with key k on message m. The SCMS suggests that
each vehicle has 20 fresh certificates per week to prevent trip
tracking, so t represents the week and the value of j ranges
from 1 to 20. LAs generate pre-linkage values which, in turn,
are relayed to the PCA for linkage value generation; similarly to
the certificates themselves, the PCA generates the linkage values
while the RA associates them with the pseudonym certificates.
Last, linkage value is computed by XORing the pre-linkage
values from LA1 and LA2 as:

lv(t, j) = plv1(t, j)� plv2(t, j) (7)

The last step of generating linkage value is done by the PCA,
not by LAs. Because each LA has the initial linkage seed and is
able to compute pre-linkage value, the LA can link pseudonym
certificates to the same vehicle if the LA can compute the
linkage value by itself. As mentioned before, at least two
components have to cooperate together to compromise the
users’ privacy.

B. Revocation processes
The revocation process is the interactions between the MA

and other components (i.e., the PCA and the LAs) as shown in
Figure 11. Note that the value in the solid rectangle is originally
obtained or stored and the value in the dotted rounded rectangle
is learned from others. When the MA receives misbehavior
reports from vehicles via the LOP, the MA needs to get the
corresponding linkage information for resolution. As mentioned
previously, at least two components have to collaborate to obtain
required information to map the pseudonym certificate to the
vehicle device; in this case, the LA and the PCA are the two
components. First, the MA communicates with the PCA for pre-
linkage values. The MA sends linkage values which are included
in pseudonym certificates to the PCA. Because the PCA is in
charge of generating linkage values, the PCA can map linkage
values to the corresponding pre-linkage values as defined in (7).
Second, the MA communicates with the LA for the linkage
seeds. Since the MA already has the pre-linkage values from
the first step, the MA can make a request to the individual LA
for looking up (ls1, ls2) from stored information of (plv1, plv2)
as defined in (6) and thus get the linkage seeds. Finally, the MA
adds linkage seeds to the CRL to finish certificate revocation.
When the MA obtains a linkage seed, it can identify all future
certificates used by the vehicle.

Linkage values

Linkage seeds

MA
1. Linkage values
2. Pre-linkage values

LA
1. Linkage seeds
2. Pre-linkage values

PCA

Pre-linkage values

1

2

Figure 11: Revocation process.


