
Fast IP Hopping Randomization to Secure
Hop-by-Hop Access in SDN

Sang-Yoon Chang
University of Colorado Colorado Springs

Colorado Springs, CO 80918
schang2@uccs.edu

Younghee Park
San Jose State University

San Jose, CA 95192
younghee.park@sjsu.edu

Bhavana Babu Ashok Babu
San Jose State University

San Jose, CA 95192
bhavanababu.ashokbabu@sjsu.edu

Abstract—Moving target defense (MTD) is useful for thwarting
network reconnaissance and preventing unauthorized access.
While previous research in MTD focuses on protecting the
endnodes, we leverage software-defined networking (SDN) to
implement MTD on the data-plane switches, which significantly
decreases the controller communication overhead and enables
quicker defense response to reduce the attack impact. Our work
not only randomizes the IP addresses for MTD but also uses
the IP addresses for synchronization across the nodes in the
networking path by generating hash-chain-based synchronization
signatures. Our scheme is practical as it builds on and encodes the
existing IP addresses for randomization to construct a modular
solution independent to the routing/flow rule implementation and
does not incur additional networking overhead except for the
seed distribution (which can occur offline). Our scheme is also
effective (the attacker’s required cost to achieve timely network
reconnaissance increases by more than an order of magnitude
than the previous state of the art having the controller actuate
the MTD randomization) and scalable (the relative overhead
cost of our scheme becomes smaller as the network grows). We
analyze our scheme and implement and experiment it on an
Open vSwitch-based testbed and on CloudLab to validate these
properties.

Index Terms—Moving target defense, Access randomization,
Network synchronization, IP address control, Software-defined
network (SDN), Data plane security, Network security

I. INTRODUCTION

Computer networking uses the IP protocol, in which the IP
addresses are used to address the networking nodes and to
route/forward the packets. IP addresses are generally arbitrar-
ily chosen and assigned to each networking nodes, and there
is significant freedom in choosing the IP addresses.

We propose encoding information to the IP address values
and introduce additional functionalities using the IP address
field of the networking header. More specifically, we use the
IP addresses to construct moving target defense (MTD) on
the data-plane switches (which forward/route the network-
ing packets on the endnode’s behalf), providing an efficient
security measure to prevent the unauthorized access of the

This work is an extended version of the short paper published at IEEE/IFIP
NOMS, Istanbul, Turkey, April, 2016 [1]. The authors extend the previous
work by introducing and developing the IP-address-based synchronization
scheme and implementing a prototype in CloudLab [2] to evaluate the
proposed schemes in various networking topologies.

networking paths. In contrast to the network security mea-
sures at the network perimeter based on filtering or intrusion
detection/prevention, MTD provides a defense-by-depth mea-
sure which can be effective even against the attackers who
already breached the network-perimeter defense and have the
access to the links in the networking forwarding paths. MTD
varies the networking parameters (such as the address, the
medium access, and the networking configuration) to build
path integrity. The authorized nodes who share the key knows
the varying pattern whereas the unauthorized parties who do
not share the key do not know the MTD pattern. MTD is
useful in preventing the unauthorized attackers from achieving
network reconnaissance, which is the process of investigating
and acquiring networking-relevant knowledge for vulnerability
discovery and is often the pre-requisite for passive eaves-
dropping and active injection threats (e.g., denial of service
(DoS) injections), because MTD significantly increases the
unauthorized attacker’s cost in probing and achieving network
reconnaissance.

While the MTD technique is generally considered effective
against unauthorized attackers and used in many contexts
(such as in configuration randomization, memory protection,
and wireless/spread-spectrum, as discussed in greater detail in
Section II), a major challenge for deploying MTD defense
is the overhead cost of implementing and executing the
MTD on the legitimate parties holding the key. While the
advantage from the key decreases the MTD effort compared
to the attackers without the key, the MTD implementation
still incurs overhead compared to having no MTD (static
configuration) and such overhead may be large enough to limit
its practicality in some applications. Prior literature proposes
building MTD defense in software-defined network (SDN), in
which the trusted SDN controller actuates the MTD on the
data-plane endnodes via explicit OpenFlow-based northbound
communications controlling the MTD execution [3], [4]. To
address the overhead issues, we significantly improve the prior
work to construct MTD defense in SDN by spreading the
information from the northbound communications (so that one
controller communication can start a chain and be used for
many MTD updates) and by having the data-plane switch
nodes execute the MTD.

2

In addition to making it lightweight for greater practicality,
our IP-address-based access randomization scheme is more
effective than the prior literature, because we implement the
defense on the switches in addition to the destination endnodes
(in contrast, prior work only protects the endnodes) in order to
limit the attack impact in the number of links/switches affected
by the attacker’s injections.

Because of the involvement of the switches along the
forwarding path, we also use the IP addresses for synchro-
nization to ensure that the source-destination endnodes and
the intermediate switches are in the same MTD phase. We
propose synchronization signatures, which are generated from
a one-way hash chain and will replace the IP addresses in the
networking header field.

Our schemes for access randomization and for synchroniza-
tion are unobtrusive and modular to the rest of the networking
operations, for example, it generally applies across the net-
working implementations and does not affect or require change
to the routing protocols or the routing/flow-rule establishment.
In addition, because the information is encoded in the IP
address field, it has no overhead in the data networking
throughput. In other words, our schemes for randomization
and synchronization piggyback on the data communications
and do not require separate communications. (The only extra
communication needed is for the seed distributions to reset
the randomization/synchronization pseudo-random generation
(PRG) chains, which overhead can be amortized because we
can control the chain length to spread the information from
that communication to multiple randomization/synchronization
instances.) Therefore, our overhead/cost evaluation includes
the computational latency and computational resources of the
MTD/IP hopping and analyze the control/set-up overhead in
Section VIII.

The lack of real-time networking overhead (no additional
communication packets) distinguishes our work from prior
research implementing MTD based on real-time controller
communications [3], [4]. Our evaluation shows that the at-
tacker cost to achieve network reconnaissance increases by
more than an order of magnitude against our scheme than
the prior state-of-the-art MTD randomization in SDN. We
also show that the overhead costs of our schemes (e.g., the
latency for the PRG and the writing of the IP address field) are
lightweight, e.g., one to two orders of magnitude smaller than
the data communication latency costs in our implementation
experiments.

We build our scheme on software-defined networking (SDN)
architecture, which de-couples the decision-making at the con-
trol plane and the lower-level implementation of forwarding
at the data plane. SDN offers a centralized infrastructure
where the controller resides in the control plane and supports
communication between the control and the data plane, e.g.,
via OpenFlow, and is typically used for intra-networking
applications (where the network is governed and operated by a
network manager). SDN thus facilitates the distribution of the

chain seeds in our work, in addition to its typical functionality
of establishing the routing of the networking packets.

To summarize, we make the following contributions in
this paper. First, we design an algorithm and a protocol to
construct a switch-centric MTD for securing the access of
the networking path. Second, we design a synchronization
scheme to allow synchronous MTD for the nodes in the
networking path; the synchronization uses the networking-
layer field so that it is appropriate and minimizes the overhead
to the intermediate switches. Third, we theoretically analyze
the MTD and the synchronization schemes and implement
them and evaluate the effectiveness, performances, and the
cost overheads. More specifically, for MTD, we focus on
its effectiveness against cognitive and reactive attacker and
compare with the prior approach of the controller-driven
MTD randomization; for synchronization, we investigate the
cost overheads and the scalability as the nodes increase in
the networking path between the source and the destination
endnode. Section II further describes our novel contributions
and contrasts them to the prior research work.

The rest of the paper is organized as follows. We review the
relevant prior work and highlight our contributions beyond the
state of the art in Section II. Afterward, we describe the system
and threat model in Section III. Our access randomization
scheme is presented in Section IV and analyzed in Section V;
our synchronization scheme is presented in Section VI and
analyzed in Section VII. Section VIII validates its effectiveness
and the security cost overhead using an Open vSwitch-based
prototype and a CloudLab-based prototype. Lastly, Section IX
concludes our paper.

II. RELATED WORK AND OUR CONTRIBUTIONS

Networking security has traditionally placed heavier focus
on the defense at the network perimeter, e.g., filtering and
intrusion detection/prevention, so that attackers do not have the
link access within the system. In contrast, we are motivated to
construct a defense-by-depth measure to build security even
when the attacker compromised the network boundary and
have the link access within the network. Our work is inspired
by prior work in wireless security to secure the communi-
cation link access and is similar in its goal in preventing
the unauthorized access at the first hop. In Section II-A, we
discuss the body of work in wireless security that inspired
our work (spread spectrum), related work in wired networking
that adopts randomization, and then other relevant work that
implements security at the data-plane switches. In Section II-B
and Section II-C, we highlight our novel contributions beyond
prior work.

A. Related Work

I) Spread spectrum As wireless communication is inher-
ently broadcast and anybody equipped with a radio can access
the communication, researchers and military experts have long
been working on securing access. In wireless medium access
control, MTD is used for building link resiliency against

3

jamming [5]–[8] and securing confidentiality against eaves-
dropping [9], [10]. Spread spectrum is a popular approach to
realize MTD [11], [12], and the access parameters are time,
frequency, and code. For instance, frequency hopping spread
spectrum (FHSS) in wireless communications dynamically
varies the carrier frequency and the frequency band in order
to prevent the attacker’s access, and fast hopping with short
hopping duration thwarts reactive attackers who sense the
channel use and adapt their strategy in real-time [13]. We
emulate the following two properties of spread spectrum: first,
the hopping is dynamic and quick (making it difficult for
attackers to react to the protocol and adjust their parameters);
second, the hopping is proactive and autonomous (as opposed
to being reactive and triggered). These properties distinguish
our work from prior work that deploys MTD at the network
layer, which work we discuss later.

The aforementioned spread spectrum work assumes single-
hop network, i.e., destination nodes are directly reachable by
source nodes, and is typically applied to secure the last hop
of communication link, e.g., between the base station and the
mobile endnode. In contrast, to adopt MTD techniques is more
challenging for communication that consists of multiple hops,
in which case, the links across the hops must be synchronized,
and the implementation spills beyond the source-destination
pair (who are directly involved in the communication payoffs)
and to the intermediate switches (who merely relay the packets
using the networking header fields).

II) Address space randomization We use the network
address as our randomization parameter. Dynamic host con-
figuration protocol (DHCP) is widely deployed for IP control
but is not designed for security. In the security context,
researchers have used dynamic addressing to prevent network
reconnaissance [14]–[19]. An adaptation of network address
translation (NAT) has also been proposed [20]. However, these
prior work in address space randomization build security only
at the endnodes (and not at the intermediate switches) and thus
the attackers can still access the path until the traffic reaches
the endnodes. In contrast, we aim to prevent the attacker access
early in the forwarding path. Beyond networking, address
randomization is also used to protect data and memory access
against software vulnerabilities such as buffer overflow [21],
[22].

III) Symmetric encryption Our scheme is similar to
cryptographic encryption in its goal to scramble the IP address
and make them unavailable without the key (the PRG seeds
in our case). However, efficiency presents a critical challenge
in using cryptographic encryption for our purpose. Symmetric
encryption such as DES or AES (which are generally superior
in processing efficiency than public-key encryption) protects
application-layer information and is not appropriate for net-
work layer, e.g., symmetric encryption protects the message
while the network header is in cleartext (not encrypted). The
switches, on the other hand, only process up to the networking
headers and are thus inappropriate to adopt encryption as it is

designed. In addition, the dynamic nature of our scheme would
require heavy loads and overheads in key/entropy generation
and distribution if trying to encrypt the IP addresses using
symmetric encryption. Key/entropy generation and distribution
present challenges in cryptography in general, e.g., one-time
pad ensuring perfect secrecy against cryptanalysts has limited
use in real-world practice due to these challenges. Due to these
challenges, we design a scheme which is more appropriate to
network-layer processing than application-layer encryption.

IV) Software-defined network Since most intelligence
is on the SDN controller, e.g., routing control, much prior
work in SDN proposes to offload the security implementation
to the controller (e.g., detection and filtering based on flow
analyses [23]–[25] and traffic analyses [26]–[29]) and build
on secure communication between the switches and the con-
troller [30], [31]. In specific, Kampanakis et al. [4] sketches the
adoption of the address space randomization technique on the
SDN controller, and OF-RHM [3] describes an instantiation
of such approach.

While we also use SDN for routing control/establishment,
our work is different from these prior work in SDN-based
MTD work in three aspects. First the security implementation
scope is different, as these prior work in address randomization
are implemented only at the endnodes and need to tolerate the
attacker traffic until it reaches the destination endnode (much
like the previously mentioned network address randomization
work in non-SDN contexts in Section II-A-II). Second, they re-
quire substantial overhead as they require interacting with the
controller whenever the network address changes; in contrast,
our work spreads the information entropy delivered from the
controller and significantly reduces the controller communica-
tion overhead; to achieve this, we delegate some intelligence
(computations) to the switches (others have also proposed to
offload responsibilities to the data-plane switches to achieve
other security properties [30], [32]). Third, in contrast to prior
work, our work is proactive in hopping/randomization and is
resilient to adaptive attackers that sense the traffic flow.

V) Security at routers/switches Our scheme implements
security at the data-plane switches and aims to prevent unau-
thorized access at the first node that encounters the access.
Other researchers proposed orthogonal approaches to achieve
the same goal, e.g., against DoS, and adopt two classes of
approach. First, the filter-based approaches detect the unau-
thorized access based on traffic analyses (e.g., using source
identities and anomalous behaviors) and assume the ability
to distinguish the unauthorized traffic and the authorized
traffic [33], [34]. Second, the capability-based approaches
involve handshaking (typically with the destination endnode
or a dedicated server) and explicit authorization for the path
access [35]–[39]. While our contribution shares similarities
with such protocols in its objective and the fact that security
is implemented at the switches, we take a different approach
and adopt MTD; our schemes also does not require the
classification of malicious traffic nor explicit handshaking per

4

flow.

B. We Implement Randomization at the Switches

We implement our randomization and synchronization
schemes at the data plane and on the switches and thus the im-
plementation scope is different from the endnode-centric prior
work, described in Section II-A. In other words, prior research
builds security at the endnodes and their communication with
the network representative (e.g., SDN-controller or a DHCP
server); the endnodes’ operations are orthogonal to the data-
plane networking and there is no defense at the data-plane
forwarding/routing. In contrast, our scheme implementation is
at the data-plane forwarding; to provide a modular solution
(while keeping the rest of the layers intact), we construct
virtual switches at the nodes in Section IV. Furthermore, since
our scheme builds protection on the path itself and at the hop-
level, it enables quicker response and prevents attackers from
overwhelming the switches and multiple communication links;
our scheme is also effective against direct or indirect link-
targeted DoS [40], [41].

C. We Make Use of the IP Addresses

While it is typical to select random and arbitrary IP
addresses for addressing/routing, we encode additional in-
formation to IP addresses so that they can be useful for
randomization and synchronization. The nodes address the
source and the destination nodes with the correct dynamic
IP addresses (which are the outputs of the IP hopping and
random to the attacker) to access the packet forwarding path
in randomization, and they broadcast explicit reference packets
with pseudo-random IP addresses for synchronization.

The randomization and the synchronization use separate and
independent pseudo-random generation (PRG). Therefore, we
introduce two orthogonal pseudo-random block chains1. Our
implementation uses linear-feedback-shift-register (LFSR)-
based pseudo-random generator (PRG) for the randomization
and hash-based PRG for the synchronization chain. While any
PRG can be used for the randomization and synchronization
chains in principle, our choice of the PRG implementation
is influenced by the LFSR’s/hash’s respective use in each
applications. LFSR is popularly used for real-time access
randomization (e.g., spreading spectrum) as the LFSR register
itself stores the current LFSR PRG output/state and the com-
putation is quick and based on bit-by-bit XOR, while hash-
based chain highlighted by its one-way property is popularly
used for one-time random token/password generations (e.g.,
S/Key [42], [43]). These existing functions are well-studied

1Our PRG chains share similarities with blockchain technology in the ledger
data structure (based on one-way hash chains) and that the functions are
computed in a distributed set of nodes (in our case, the nodes along the
forwarding path). However, our PRG chains are different from the blockchain
technology because the computations, given the seeds, are deterministic and
therefore the controller (providing the seeds) drives the consensus process.
In contrast, blockchain achieves consensus in a distributed manner and often
involves a random process.

in their security properties and are well-adopted for security
applications.

III. SYSTEM MODEL

A. System Assumptions

We consider a connected multi-hop network and assume
IP-protocol-based forwarding. Our scheme is independent to
the routing decisions/implementations and generic across the
routing protocols as long as they are IP-driven, so we assume
that they are given. While our scheme is generally applicable
to the routing protocols (including those that are primarily
driven by the destination-node address, e.g., Routing Informa-
tion Protocol (RIP) and Open Shortest Path First (OSPF)), the
switches (executing routing and forwarding) check and process
both the source IP address field and the destination IP address
field, which are included in the networking header by IPv4
and IPv6 standards. Our scheme makes use of both source IP
address and the destination IP address for randomization.

We build our scheme on the SDN architecture (where a
controller establishes and communicates the routing decision
and the switches forward traffic accordingly) and focus on the
intra-domain communication applications (e.g., governed by a
single operator). We also leverage a public key infrastructure
(PKI) for the distribution of the seed values that will activate
our scheme. More specifically, we have three seeds: two for
randomization hopping (IP seed and PRG seed) in Section IV
and the hash seed for synchronization in Section VI. The
security of our work relies on the PRG seed and the hash
seed. The SDN controller distributes the seed values to the
data-plane nodes. We assume secure control communication
between the control and the data plane, e.g., [30], [31] (for ex-
ample, by using asymmetric encryption for confidentiality and
digital signature for integrity) and secure controller, e.g., [32],
[44], and we rather focus on the threats on the data plane.

Our scheme can be used for multiple flows where each flow
is for a sender-destination pair. For multiple flows, our scheme
introduces multiple chains for randomization in Section IV
(one chain per flow and keeping tracking of PRGseed and
t per flow) and multiple chains for the synchronization in
Section VI (one chain per flow) . However, for storage, while
the synchronization requires storing multiple signatures per
flow, the randomization requires the switches and the endnodes
to only keep track of PRGseed and t per flow and do not need
to store beyond those values for each flow, assuming that the
routing/flow rules are given as described earlier (e.g., storing
and keeping track of the endnodes’ IP addresses to identify
the flow and the corresponding routing rules). For simplicity,
we assume a single flow when describing our scheme, i.e., the
scheme is presented in a per-flow perspective.

B. Threat Model

An attacker accesses the networking path without the legit-
imate authorization for the access. We also consider compro-
mised network with the attacker being physically connected

5

to the network and having bypassed the perimeter filter and
gateway, for example, the attacker is connected to the network
from within. Our scheme defends such attack by thwarting
network reconnaissance. Network reconnaissance is to learn
about the victim network and its vulnerability and is a pre-
requisite for many access-based attacks, such as eavesdrop-
ping, injection-based DoS, and malware/exploit delivery.

We do not consider the orthogonal threat of disrupting the
routing and the forwarding process, which requires a stronger
attacker with increased attacker requirements than our threat
model. Even though the attacker has access to the path links,
it does not control the switches, e.g., to take active measures
in the routing and forwarding process. For example, if a node
along the forwarding path is compromised and disrupts the
forwarding process, e.g., re-routing and packet dropping, then
the routing protocol can choose another forwarding path which
does not include that misbehaving/faulty node. Such threat
model is more difficult to implement than ours (increasing the
attack barrier) as it requires the compromise of a switch which
is a part of the networking infrastructure, as opposed to just
having connection to a switch or a networking link. Thus, we
do not consider compromised switches that have active control
on the forwarding and routing operations.

We consider an advanced attacker that is dynamic and
adaptive. It can both passively monitor/analyze the traffic and
actively send queries and probe for network reconnaissance;
afterward, the attacker can use the information to facilitate
their unauthorized access. (An analogy to wireless commu-
nication is a reactive jammer where the jammer performs
cognitive-radio-like sensing of the spectrum to decide where
to focus its jamming for maximum impact.) The attacker’s
traffic sensing and the adaptation of the access strategy is
done in real time. To counter such sophisticated threat, we
proactively and rapidly update the IP address for MTD. If
the MTD randomization supports reactive trigger (e.g., IP
changes when there is a misbehavior detection) and relies on
the prior state of the art in controller-induced randomization,
such attacker can indirectly launch a MTD-specific DoS on
the control communication by repeatedly and intentionally
triggering misbehavior detection and forcing the controller to
continuously update the security parameters, overwhelming
the network with control communication updates and thus
blocking the actual goodput delivery.

IV. ACCESS RANDOMIZATION SCHEME: IP HOPPING

We deploy IP randomization across all nodes (endnodes
and switches) which are involved in the forwarding path. We
generate IP addresses, based on a local seed and a random
seed, and use them for randomization on the switches. The
SDN controller distributes the seeds and controls the routing
operations (including the routing/flow rule updates on the
switches), as discussed in Section III-A.

Similarly to some other routing schemes [35], [36], our
work can be used to establish priority-based forwarding where
the traffic that uses our scheme has higher priority in the path

Transport
Layer

Network
Layer

Physical
Layer

IP Hopping

(Upper Layers …)

(Communication
Link)

Endhost

Fig. 1: Operational flow for endnodes (the source node in this
case) to highlight the modular design. Our contribution lies at the
IP Hopping/De-Hopping module between the other network layer
operations and the physical-layer.

access and forwarding. The low-priority traffic which uses
the static IP address without MTD can be processed in an
unobtrusive manner to the high-priority traffic (only getting
processed when there is no higher-priority traffic) or can be
banned altogether, depending on the priority scheme design
and implementation. As discussed in Section III, we assume a
single flow and that the IP randomization is enabled (e.g., high
priority traffic) in this section for simplicity in presentation.

To provide a modular solution which can be deployed across
the networking/routing implementations, our scheme provides
a transformation between the original IP address (used for
routing and other networking decisions) and the IP address
used for MTD randomization. The process of converting from
the original to the randomized IP address is called IP hopping
and the reverse process is called IP de-hopping, and both the
source IP address and the destination IP address goes through
IP hopping/de-hopping processes. In addition, we construct
virtual switches within the nodes, so that the packets are
processed for IP hopping after the network-layer operations
and before the physical-layer mappings. The operations of the
virtual switches for endnode are described in Figure 1 while
those for the endnodes and the switches as well as the hopping
and the de-hopping processes are described in Figure 2. The
operations of the virtual switches at the endnodes are the same
as those at the switches, except that the source node does
not perform IP de-hopping and the destination node does not
perform IP hopping.

A. IP Hopping: Address Generation and Randomization

Unlike other schemes which implement security at the
controllers [23], [24], [26]–[29] including the work that builds
MTD [3], [4], we offload the control computation to the
data plane and on the switches in our work. However, the
operations on the switches are marginal in intelligence as they
perform routine protocol and computations. The nodes along
the forwarding path (both the endnodes and the switches)
locally implement pseudorandom generator (PRG), which is
uniform and agreed across the nodes. Once the controller
provides the initial input, the switches iteratively compute the

6

PRG function to construct a PRG chain. Each PRG function
output is used at a time, and the next iteration for computing
the PRG function corresponds to updating.

The endnodes and the switches update the IP addresses from
the two seeds: the IP address seed (unique for each nodes) and
the PRG seed (provided from the controller and used to drive
the PRG). The local IP address seeds of the nodes are static
and do not need to be private information, for example, the
static IP addresses (which have been used before the activation
of our scheme or is used to send the low-priority traffic) can be
used as this seed. All nodes involved in the forwarding know
each other’s IP address seeds. The variation for randomization
comes from the PRG; the function and the seeds are uniform
across the nodes involved in the path (including the source
and the destination endnodes, equipped with hopping-capable
virtual switches). Nodes not involved in the path forwarding
do not know the PRG seed, and thus the PRG output appears
random to them.

The updated IP address (IPupdate) is a function (f) of the
IP seed (IPseed) and the PRG output (PRG), which in turn is
a function of the PRG seed (PRGseed) and the time in packets
(t):

IPupdate = f(IPseed , PRG(PRGseed , t)) (1)

where both f and PRG are some deterministic functions. This
IP address transformation is also described in Figure 2 (bottom
right). While f−1 (given either IPseed and PRG output)
is easy to compute, PRG−1 and PRG (without PRGseed)
are difficult to compute. While this section focuses on the
use of the functions and do not identify the functions, the
following section provides concrete functions for IP hopping.
The input t corresponds to the time in packets, as opposed to
the absolute time, and incrementing/changing t varies the IP
update. Section VI describes the synchronization and how t is
shared and agreed across the nodes.

B. IP Hopping: Our Implementation

In our implementation, we use Class A private addresses
with subnetwork address of 10.X.X.X and subnet mask of
255.0.0.0, leaving us 24 bits for randomization; because the
entropy is the same as the size of the host address space.
adopting our scheme with IPv6 will significantly increase the
randomness and the security strength. We implement the IP
hopping by applying the followings: the randomization is at
the IP addresses of the nodes; the static IP address, e.g.,
for low-priority traffic, acts as the IPseed; we use a linear
feedback shift register (LFSR)-based2 PRG (with t increment
triggering the shift and t = 0 corresponding to no shift and
being in the state of PRGseed); and f is cyclic addition
for each decimals (representing one byte each). Thus, both

2LFSR is popularly used for military applications such as cryptography and
scrambling (e.g., DSSS) and is known to generate maximum entropy against
brute-force threats, as it produces maximal length sequences (i.e., if the bit
length is l, it produces 2l − 1 distinct states before it repeats itself).

f: IPseed à IPupdate

…

IP De-Hopping
(f-1)

Forwarding
Protocol

IP Hopping
(f)

Packet
(IPupdate)

PRG

Packet
(IPupdate)

Packet
(IPseed)

Packet
(IPseed)

Routing/Flow
Rules

tPRGseed

f-1: IPupdate à IPseed

f-1 f f-1 f

Fig. 2: IP hopping (f) and IP de-hopping (f−1) on the endnodes and
the switches. The information/time flows from left (source) to right
(destination). The top describes the IP address transformation using
hopping and de-hopping of the incoming and outgoing packets, while
the bottom shows the transformations in greater detail occurring at
the switches.

f and PRG are linear and computationally efficient in our
implementation.

The IP seed can be found by reversing the operation and
using f−1 from IPupdate, i.e., cyclic subtraction by the PRG
output, as described in Figure 2. For the packet at time t, the
legitimate users that forward the packets know the PRG output
(as they are using the same PRG, PRGseed, f , and t). The IP
seed information, requiring the correct PRG value, identifies
the source and the destination of the networking packets, as
we will discuss further in the following section.

We illustrate the f of decimal-based cyclic addition with an
example. If a user has a static address of 10.0.240.25 and the
PRG output for time t = t′ is 10.0.18.25, then the updated IP
address is IPupdate = 10.0.2.50, and that user will use the IP
address of 10.0.2.50 at time t = t′. The least significant byte
is derived from (25+25) mod 256 = 50 while the second-least
significant byte is from (240+18) mod 256 = 2. Other switch
nodes along the networking path also compute PRG output of
10.0.18.25 at t = t′ and cyclic-subtract it from the received
10.0.2.50 to retrieve the IP seed of 10.0.240.25.

C. IP De-Hopping & Forwarding

The route is established based on the static IPseed ad-
dresses, e.g., the routing table lists the routing rules and
policies and is only updated when directed by the SDN
controller. The IP header (which is network-layer information
and is thus accessed by the switches by design) enables
the switches to conduct MTD/path access validation. If the
IPupdate values of the source and the destination IP addresses
of the received packet do not get mapped to the correct IPseed
from one of the pre-stored flows, then the packet is invalid in
MTD.

7

As depicted in Figure 2, given the routing and the flow
establishment, the forwarding nodes locally decrypt the IP
randomization by performing f−1 with the PRG output to
check whether the traffic is addressed correctly (and hence
legitimate). Once packets arrive, the forwarding nodes first
check the source’s and the destination’s updated IP address;
by computing f−1 of cyclic subtraction, the forwarding node
learns the IPseeds of the addresses and identify the routing
path according to them. If the IP addresses are valid and
the corresponding route/path exists in the routing rule, the
switch locates the next-hop node based on the IPseed but
performs the IP-hopping function to forward the packet with
the IPupdate addresses (IP seed is invisible outside of that
node’s computation); if the flow/route is not established based
on the IPseed addresses, the packet is dropped. All switches
supporting our scheme perform this process.

V. IP HOPPING RANDOMIZATION ANALYSES

A. Hopping Collision for Multiple Flows

We consider multiple traffic flows in this section. If multiple
flows coexist and the path carries traffic from multiple sources,
there can be collisions in IPupdate in Equation 1. However,
if f given IPseed is injective with PRG (i.e., different PRG
yields distinct f | IPseed), then we can resolve collision and
distinguish packets that are addressed to the same IPupdate
by coupling the information of IPupdate and IPseed. In other
words, if traffic from different flows address the switch with
the same IP address at the same t, then the two packets can be
distinguished by computing f−1 and identifying the IPseed of
the respective flows.

B. Security Analyses

Attackers who wish to compromise a forwarding path
need to know that the routing path based on the IPseed is
established in the routing table and the corresponding IPupdate
values of the source and the destination. The security of our
scheme relies on the secrecy of PRGseed and consequently the
PRG output. To defeat the reactive attackers who observe the
packet traffic and compromise the relevant set of IPupdate,
we have the IP update more quickly than the attackers’
reaction time. Because the IP generation and updates are being
processed within the host (as opposed to via control commu-
nication with a separate entity, e.g., the controller [3], [4]), our
scheme is fast and significantly increases the attackers’ cost,
as we will also see in experiments in Section VIII-B.

To protect PRGseed, we use t > 0 for the IP randomization
to avoid using the plaintext PRGseed as the PRG output with
the initial packet (to defeat lurking attackers who capture the
network-layer information at the first packet). However, we do
not rely on the secrecy of f and PRG themselves; both f and
PRG are public information by Kerckhoff’s principle. Our
main contribution does not involve building a secure PRG,
and we rather rely on the security properties of mature and
well-adopted functions (for example, it is difficult to compute

PRG without PRGseed and t); because it is widely used for
real-time scrambling for security applications, we use LFSR-
based scrambling for PRG.

Our scheme is secure against an attacker that monitors the
traffic over time and gathers the history of the utilized IP
addresses to acquire the PRGseed. For such attacker, linking
the individual packets to the flow and the source-destination
pair (to learn the per-flow packet sequences) is challenging,
especially when multiple users and flows are using the link
(where the attacker compromise resides). Even when the
attacker is successful in gathering and storing the history of
the IP address updates using some side channel information
(for instance, it has the assurance that there is only one traffic
flowing), the attacker needs to break the PRG to learn the
PRGseed and access the path.

VI. SYNCHRONIZATION SCHEME

Since the intermediate switch nodes serving the source and
the destination keep track of the IP addresses of the source
and the destination nodes for access/forwarding path ran-
domization, they need to be synchronized. More specifically,
the aforementioned nodes require packet-level synchronization
and the agreement of t (used for MTD randomization in
Section IV) since t changes/varies the IP address.

Our synchronization scheme supplements the randomization
scheme in Section IV and constructs an explicit network-layer
synchronization signature based on IP address control. The
signature is embedded in the network layer of the packet car-
rying data and therefore does not cause additional overhead in
communications, in contrast to using separate control packets
exclusively for synchronization, e.g., [45].

A. Synchronization Signature Generation Using One-Way
Hash Chain

As described in Section II-C, we introduce a separate,
independent PRG chain from the one used for randomization
in Section IV. While other PRG implementations can also be
used for synchronization signature, we use a one-way hash
chain for the synchronization signature. We assume two prop-
erties of the hash function h, which are typical for many cryp-
tographic applications; the hash h produces random/pseudo-
random output (and the attacker cannot identify a pattern on
the output) and the h function has one-way property, i.e., it is
easy to compute but difficult to solve the reverse computation
of h−1. (Our scheme does not require collision resistance as
discussed later in this section.) Given a one-way hash function
of h, hα(x) takes the input x and applies h on that input α
times, for example, h2(x) = h(h(x)).

For each path (or for each source-destination pair), all nodes
in the path (the source, the destination, and the switches)
compute the hash chain of length m from h1, h2, ..., hm by
using the input h0, e.g., h1 = h(h0) and h2 = h(h1) =
h(h(h0))), where h0 is shared/communicated to the nodes a
priori by the SDN controller. This provides m synchronization
signatures providing m synchronization instances to notify the

8

Fig. 3: Hash chain for synchronization signature generation

nodes of the time to update. From the computed and stored
hash chain, the nodes use the hash values in the opposite
order of its generation, i.e., they use hm first and then hm−1

and then hm−2 and so on, as depicted in Figure 3. When
all of the m synchronization signatures are used, another
northbound communication to the SDN controller takes place
for a new h0 and a new chain. m therefore provides a design
parameter to control the tradeoff between SDN controller
overhead, the security impact, and the switch memory. As
m grows, the synchronization-chain-refresh rate decreases
and the controller-communication overhead decreases, but the
attacker has greater impact once it does compromise the chain
and it requires greater memory on the switches for storing the
synchronization signatures (the switch needs to store all the
remaining synchronization signatures to be used and therefore
stores all m signatures when the chain is newly refreshed). Our
hash-chain-based PRG chain construction and use is inspired
by and is similar to the S/Key one-time password/token
generation [42], [43] and TESLA broadcast authentication for
wireless network [46], [47].

The use of hash values in the opposite order of their
generation in the hash chain provides security due to the
one-way property of hash functions. This construction also
makes collision irrelevant as the attacker needs to find the
exact input to breach the hash chain; our scheme thus does
not require the collision resistance property, which is a typical
requirement of cryptographically secure hash functions. For
example, suppose the current synchronization signature uses
hm, then the attacker breaks the security by finding the exact
hm−1 and not another h′ which generates a collision, i.e.,
h(h′) = h(hm−1) = hm, h′ 6= hm−1, as the attacker using
the h′ to generate/transmit a false synchronization packet to
break the integrity of the synchronization does not match with
the pre-stored hm−1. Therefore, our requirement for the hash
function has less constraints than the hash functions in other
cryptographic applications requiring collision resistance.

The hash values are converted to IP addresses, for example,
given the hash outputs, the least significant bits (LSB) of
the length of the IP address becomes the IP address. These
IP addresses, which we denote with IPsync, are used as the
synchronization signature.

B. Synchronization Signature Propagation

Whenever the source node wants to increment t to up-
date/change the IP addresses for the randomization, it embeds
the synchronization signature IP address (IPsync) on the

source address field of the networking header. In other words,
while the destination node is still referred to by the IPupdate
in Equation 1 so that the switches know the routing paths,
IPsync replaces the source IPupdate. Because the path-unique
destination’s IPupdate can be used to identify the path and
the next-hop switch, the synchronization packet can travel
the same path as the data packets and therefore the syn-
chronization packet can still be used for data communication.
While the data gets communicated, there will be occasional
synchronization signatures (IPsync) embedded in the source IP
address field, indicating the synchronization/update instance,
while the other non-synchronization data packets use IPupdate
for the source IP address.

For verification of the synchronization packet, each node in
the forwarding path checks the destination IP field (IPupdate
from Equation 1 for the access randomization) and the source
IP field (IPsync from the synchronization chain); the two IP
addresses are from separate PRG chains and are independently
generated to each other, and all nodes have the capabilities to
compute both IP addresses while they remain random to the
attackers.

Once the synchronization packet is transmitted to notify
the update in the access randomization, the current synchro-
nization signature can be broadcasted as it is designed for
notifying the nodes in the forwarding path. Our construction
and the analyses in Section VI-A assume insecure channel and
that the attacker can compromise the current synchronization
signature once it is transmitted by the source endnode; if the
attacker repeats the packet and conduct replay attack, then
it actually helps the cause for synchronization. In fact, in the
cases of lossy channel, e.g., a faulty link or switch sporadically
drops the packets, then the source endnode can repeat the
synchronization signatures in the IP address field in order to
ensure the delivery of the synchronization signature. We leave
such redundancy control to resolve lossy packets as future
work; our implementation testbeds in Section VIII had no
issues with lossy packets.

VII. SYNCHRONIZATION OVERHEAD ANALYSIS

We analyze the overhead of our IPsync-based synchroniza-
tion scheme in computation and storage and more specifically
its scalability with respect to m (the number of randomization
updates supported per randomization PRG chain) and n (the
number of endnodes, and not the switches, which can become
source or destination, depending on their communication needs
at the time). The networking overhead (additional communica-
tion needed) is zero since the synchronization packet can also
be used for data communications without needing separate
synchronization-exclusive packets. The overhead costs apply
to all nodes including the switch nodes.

Our synchronization scheme requires the computations of
the hash chain, which involves exactly m hash computations
per path. At bootstrapping (when n nodes get activated), there
can be n · (n − 1) paths (there are nC2 = n(n − 1) pos-
sible source-destination combinations, and we assume single

9

path per source-destination pair for our scheme), resulting
in mn(n − 1) hash computations. The initial bootstrapping
overhead (when n endnodes are first introduced) is thus
mn(n− 1).

After the bootstrapping, the nodes will generate synchro-
nization signatures as is needed and on a per-path basis
and therefore the computational overhead is actually m hash
computations to generate a m-long hash chain. Therefore, per
chain update, it requires m hash computations. We implement
the hash chain and measure the hash computational cost in
Section VIII-E in order to demonstrate the relatively low
computational overhead of hash chain construction.

While each chain requires m hash computations, for storage,
all computation outputs for all possible paths need to be stored,
and therefore the storage overhead has the the computation
cost of O(mn(n − 1)) ∼ O(mn2) where O(.) is the big O
notation. The exact storage overhead also increases with the
length of the IP address; for example, in our implementations
in Section VIII, we use 24-bit host address for randomization
and synchronization, so the storage overhead is 24mn(n− 1)
bits.

Choosing m provides a tradeoff between multiple design
factors. Increasing m decreases the frequency for the north-
bound controller communication but increases both the com-
putational and storage overhead. m also affects the freshness
of the chain and smaller m may provide stronger security
in principle, especially if the PRG generator function has
questionable security (currently, in computational security,
there is no known attacks that break the PRG generators
we use for our instantiation). However, as a constraint for
m for security purpose, we recommend having m smaller
than the period of the PRG used for the randomization, e.g.,
the maximal length of LFSR which is 2l − 1 where l is the
bit-length of the LFSR registers, to avoid repetition (and the
corresponding security weakness) in the PRG.

VIII. IMPLEMENTATION EVALUATION

To evaluate our scheme, we build an Open vSwitch-
based [48] testbed prototype (Section VIII-A describes the pro-
totype implementation) and a CloudLab-based [2] prototype
(for analyses with varying networking size and topologies).
In a single-flow environment (no other networking traffic),
after the seed distribution, we take benchmark measurements
to show the performance gain of our scheme and the increased
security against a reactive attacker, described in Section III-B.
Section VIII-B measures the packet delivery latency and
compares our IP randomization/hopping scheme with the
prior state-of-the-art IP randomization scheme (which involves
communication with the controller for every IP update), and
Section VIII-C discusses how our fast IP hopping defeats the
network reconnaissance attack. In Section VIII-D, we analyze
the impact of the size of the network and, more specifically, the
length of the path, e.g., the number of intermediate switches
between the source and the destination, and in Section VIII-E,

Controller

H1 H2

S1 S2

Fig. 4: Our experimental setup in the Open vSwitch testbed

we study the computational latency overhead of the synchro-
nization when the forwarding path resets the synchronization-
hash chain.

Because we study the scalability and the dependence on
network topology, we implement our scheme on CloudLab [2].
CloudLab is an open-cloud platform to provide Infrastructure
as a Service (IaaS), supported by National Science Founda-
tion (NSF), and enables greater control in the networking
topology. Since the performance values are sensitive to the
system implementation details [49], [50], e.g., we also see
different measurement values between the Open vSwitch- and
CloudLab-based testbeds, we describe the performance in
gains over reference measurements. The delay measurements
are taken over 10,000 samples for both OVS-based testbed and
the CloudLab environment; this number of samples provided
a small confidence intervals from the mean values displayed
in this section and support the statistical significance of the
behavior presented in this section.

A. Open vSwitch-based Prototype Implementation

To construct a local network for our experiment, we use
five computers (Intel Core 2 Duo, 2×2.20GHz CPU with
2.0GB RAM) and an ethernet switch for the physical devices.
There are two endnodes (the source and the destination), two
switches, and a controller server; each computer emulates dis-
tinct roles. The switches are software-based in Open vSwitch
2.3.0 [48], and the controller is based on OpenDaylight Helium
supporting OpenFlow 1.3. Unlike the switches, the physical
ethernet switch device does not support any virtualization
and has the sole purpose of bridging the wired connections.
Figure 4 depicts the network topology and the roles of the
computer hosts; we focus evaluating our scheme given a
forwarding path.

We implement a prototype for our scheme. As PRG has
comparable data format as IP addresses, we use DHCP pro-
tocol for the PRG seed distribution with the DHCP server
implemented at the controller. Then, the nodes locally ran-
domize their IP addresses, as described in Section IV-B, and
send packets with the updated IP addresses. Only when the IP
addresses are correct do the packets go through, as discussed
in Section IV-C. For example, when the host H1 directs its
packets to other hosts with incorrect IP addresses, e.g., because

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet latency (milliseconds)

C
D

F

Our scheme

Baseline

Fig. 5: The measurement distribution in cumulative distribution
function (CDF) of our scheme and the controller-driven baseline.
For baseline (with greater variance), we also show the average in a
vertical line.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reconnaissance cost (milliseconds)

C
D

F

Fig. 6: The measurement distribution in cumulative distribution func-
tion (CDF) of attacker’s cost in achieving network reconnaissance.
The horizontal axis is aligned to Figure 5.

it is unauthorized and does not have the correct IP update, then
the packets get dropped at the next hop at S1.

B. IP Hopping Randomization vs. Controller-Driven Random-
ization

We compare our scheme to a baseline reference. The
baseline scheme is to involve the SDN controller for the IP
randomization of the nodes, which is adapted from the state-
of-the-art mechanism to build MTD on the hosts in SDN [3],
[4]. However, the baseline scheme differs from these prior
work in that they randomize the addresses of all nodes on the
forwarding path as opposed to just the endnodes.

The gain of our scheme over the baseline comes from
the fact that the randomization operations are done locally
within the nodes as opposed to involving the controller (the
baseline). After the PRG seed is distributed to the endnodes

and the switches, we generate 64-byte ICMP packets (ping),
apply randomization for each packet, and compare the packet
latency between the two different MTD approaches. We also
isolate the operations and measure the latency when the
randomization/update is done locally via LFSR computation
and when it is done via the interactions with the controller. The
latency performance for our scheme is 0.2680 milliseconds
per packet delivery (averaged over 10,000 measurements) and
the LFSR computation (which output will be used for the IP
update) takes 14.58 nanoseconds (averaged over 10 cycles or
10 × (224 − 1) ≈ 1.678 × 108 IP addresses), which accounts
for a marginal 0.0054% of the total packet latency. On the
other hand, the controller-involved baseline scheme has an
average latency of 3.7159 milliseconds per packet delivery
where the controller overhead for IP update accounts for 93%
of the latency. The latency distribution of our measurements
are shown in Figure 5. Thus, our scheme compares favorably
to the baseline, as the attacker needs to improve its reaction
time by more than an order of magnitude to successfully
breach the updated IP address.

In addition, Figure 5 shows greater variance/randomness in
the measurements when the controller is involved (baseline)
than having the randomization performed within the nodes
(our scheme) even in our controlled lab environment; the
baseline involves multiple nodes for MTD execution while
our scheme involves intra-node computation. This corroborates
with our findings that the variance increases as there are
greater number of nodes involved in Section VIII-D.

C. IP Hopping Against Attacker Network Reconnaissance

To understand the attacker’s perspective against our scheme,
we instantiate a network reconnaissance threat by having a
malicious node inquire for the node’s IP address via traceroute
once it encounters the traffic. This approach provides an im-
mediately feasible implementation of the attack and provides
an estimate of the attacker’s cost in our experiment. Further
analyses or optimization of such attack implementation (e.g.,
enabling traceroute is not compulsory, although often enabled
by default, and the switch can decide not to engage with the
attacker) or other attack implementation approaches are not
the focuses of our work and are out of scope of this paper.
As discussed in the following, our scheme can defend against
such network reconnaissance attack.

Figure 6 shows the delay cost of the attacker, which is
1.5462 milliseconds on average. In contrast, our scheme costs
14.58 nanoseconds for IP generation, as the update is locally
computed within the node (without requiring communication
with outside of that node), and the average packet latency is
0.2680 milliseconds, as discussed in Section VIII-B. There-
fore, the attacker’s reconnaissance delay is more than five
times greater than the packet delivery latency when using our
scheme. In other words, in this networking scenario, if we
restrict the liveness of the IP update hop by five packets or
less, then the information becomes outdated by the time the
attacker achieves reconnaissance (and begins exploiting the

11

reconnaissance for further attacks). However, unlike our IP-
hopping scheme, the controller-driven IP randomization (the
baseline scheme in Section VIII-B) is not fast enough to
defend against the implemented reconnaissance attack even
if the IP address is changed for every packet, leaving about
1.9 milliseconds for the attacker to use and exploit the vulner-
ability from reconnaissance.

D. Network Topology Dependence

While Section VIII-B and Section VIII-C demonstrated
our scheme’s superior efficiency over the controller-relying
state-of-the-art baseline scheme and the effectiveness against
attacker reconnaissance, respectively, we analyze our scheme’s
dependence on the network topology (and more specifically
the path length between the source and the destination nodes)
in this section. To support greater level of control in network
topology, we implement and experiment in CloudLab [2],
comprised of Intel Xeon E5530 processors at 2.4GHz; our
implementations in CloudLab corroborate with our findings in
Section VIII-B and Section VIII-C and thus we focus on the
network topology dependence in this section.

Figure 7 shows the measurement results for the processing
delay of our randomization scheme while varying the path
length in hops, excluding the propagation delay (which we dis-
play separately in Figure 8). We measure the processing/CPU
latencies for the following tasks: “Randomization update” (IP
address update based on LFSR PRG), “Delivery w/o ran-
domization” (processing the networking without IP-address-
based access randomization), and “Delivery w/ randomization”
(processing the networking with the IP-address-based access
randomization). “Delivery w/ randomization” measurement
already includes the task of “Randomization update”.

Randomization update (which includes running the LFSR
PRG and the IP address update) takes 35.36µs and does
not vary with the path length, as all nodes are computing
them separately and independently to each other. Within
the randomization update (comprised of running LFSR and
writing/updating the IP address), the time to update the IP
address took the most of the time, as the time to run the LFSR
PRG takes merely 1.353µs, which accounts for less than 4%
of the randomization-update process.

The processing for the networking delivery varies with
the number of switches in between and is larger than the
randomization-update overhead. When the hop length is one
and the source and the destination are directly connected with
no switch in between, the networking processing time without
randomization scheme (“Delivery w/o randomization”) is 4x
greater than the randomization update; such difference in the
processing overhead between that for networking and that for
randomization update continues to grow as there are more
switches in between, e.g., when 8 hops between the source
and the destination, the difference grows by 6.41x. Therefore,
the CPU/processing overhead of adding our IP randomization
scheme (which increment corresponds to the randomization-
update cost) is small compared to the normal networking

Fig. 7: The processing latency measurement with respect to the path
length. This measures the average CPU time/latency over 10,000
samples without the packet propagation time, and the 95% confidence
intervals are sub-microseconds, i.e. within 0.001 milliseconds (the
propagation variance is greater as we will observe when discussing
Figure 8). The horizontal axis shows the number of hops or the
number of switches involved, e.g., 1 hop (on the far left) corresponds
to direct link between the source and the destination involving 0
switches.

Fig. 8: The packet/path propagation time measurement with respect
to the path length. This figure shows the average propagation delay
over 10,000 samples.

cost (without implementing our scheme), and the overhead
becomes even relatively smaller as there are more nodes/hops
in the path.

Propagation overhead, compared to the processing overhead,
has a more of a dramatic increase as the path length increases
and more nodes get involved in the packet delivery. Figure 8
studies the propagation delay, which is the time it takes
for a packet to travel from the source to the destination.
While the latency overhead with randomization grows by
40% for processing from 1 hop to 8 hops in Figure 7, the
propagation latency grows by 1522% from 1 hop to 8 hops
and by additional 1205% from 8 hops to 16 hops. Also, the

12

Mean (µs) Standard deviation (µs)
Hash computation 2.499 1.889
Hash and IP update 3.309 2.539

TABLE I: The cost overhead (time) of generating SHA-256-based
synchronization signature

variance/randomness of the latency measurements increase as
there are more switches involved in the path. From 1 hop
to 16 hops, the 95% confidence interval bound (assuming
symmetric distribution) monotonically grows from 0.908µs to
3.45µs with 10,000 samples and from 5.9µs to 30.4µs with
100 samples. With 10,000 samples, the confidence intervals
are 0.908, 0.945, 1.66, 2.59, and 3.45 (all in µs) with 1 hop, 2
hops, 4 hops, 8 hops, and 16 hops, respectively. Even within
our network scenario, which has a single data traffic flow,
the randomness increases as more nodes are involved in the
forwarding.

In addition to the network topology, the latency performance
is highly dependent on the system implementation, such as
the SDN implementation [49], [50], and the networking en-
vironment and state, e.g., the number of simultaneous traffic
flow and the switch queue state. While we analyze the latency
dependence of our scheme on the path length, our performance
measurements are conservative and the actual overhead of
implementing our IP-hopping scheme is even lower relative to
the networking delivery costs because there is no other traffic
in our setup. In contrast, real-world networking with multiple
traffic flow, introducing queuing delays on the switches will
increase not only the delivery/propagation latency magnitude
itself but also the randomness in the delivery/propagation
latencies across different packets within the same flow, while
the additional overhead incurred by our scheme is independent
to such factors.

E. Synchronization Overhead

Using machines based on Intel Xeon E5530 at 2.4 GHz in
CloudLab, we study the overhead of our IP synchronization
scheme. More specifically, we measure the computational
overhead in latency for pre-computing m synchronization
signatures for each node. Our implementation uses SHA-256
hash function because the maturity of its one-way property
and the wide use for security applications; as explained in
Section VI, our synchronization scheme relies on the hash
function’s one-way property to prevent the attacker from
breaching the synchronization by knowing about the future
synchronization signatures before their use. To provide a ref-
erence, SHA-256 is used for Bitcoin (cryptocurrency), which
mining is based on finding the reverse of a hash function and
the miners has a global-scale computing resource (with the
crowd-sourced miners competing around the world); success-
ful mining, accepting multiple solutions/collisions, happens
once every ten minutes; having such computational resource
(equivalent to pooling the global-scale miners) is very difficult
and expensive but, even against a hypothetical attacker with
such computational resource, breaking the hash chain designed
for our synchronization is more difficult than Bitcoin mining

because our synchronization chain does not allow collisions
(whereas collisions are allowed in Bitcoin mining to control
the difficulty of the mining process).

As is shown in Table I, each hash computation based on the
SHA-256 function takes 2.499µs on average, which is smaller
by two orders of magnitude than the networking delay in the
small-size OVS-networking-prototype in Section VIII-B and
smaller by three orders of magnitude than the propagation
time of a reasonably sized network (with a hop length of
greater than four) in CloudLab in Section VIII-D. The hash
computation, along with the IP address field update, takes
3.309µs on average. When the synchronization signatures get
exhausted (and a new batch of m synchronization signatures
are needed) or there is an update in the path (e.g., by flow-rule
or routing change), each node needs 2.499mµs to compute the
m-long hash chain and generate m synchronization signatures.
Such computation for synchronization signature generation
can also be done off-line or pre-computed, as the remaining
hash chain gets shorter and there is an impending need for a
new chain.

IX. CONCLUSION

We propose IP-address-hopping-based MTD in SDN to
secure the forwarding path access against unauthorized access
and network reconnaissance. The defense is implemented
at the data plane (making it lightweight in networking and
latency overheads) and at the hop level (thus preventing the
unauthorized access from the first switch it encounters) and
therefore outperforms the prior state of the art (having the con-
troller randomize the endnodes’s addresses) in both the defense
impact and the processing/networking efficiency. Because our
defense involves not only the endnodes but also the intermedi-
ate switches, we also build a IP-address-based synchronization
scheme that uses a one-way hash chain and piggybacks on the
data communications without incurring additional networking
overhead. Considering an advanced attacker monitoring and
probing the network for reconnaissance, we observe that our
scheme increases the attacker’s requirement cost for timely
reconnaissance by more than an order of magnitude in our
controlled lab environment. In CloudLab, we also show that
the overhead of our scheme becomes even smaller relative to
the data networking cost as the network size and the path
length increases.

X. ACKNOWLEDGEMENTS

This work was supported by the grant from National Science
Foundation (NSF-DGE-1723804). Dr. Younghee Park is the
corresponding author. This paper is an extended version of
the short paper published at IEEE/IFIP NOMS, Istanbul,
Turkey, April, 2016 [1]. The authors extend the previous work
by introducing the IP-address-based synchronization scheme
and implementing a prototype in CloudLab to evaluate the
proposed schemes in various networking topologies/sizes. We
would also like to thank the anonymous reviewers and the
Associate Editor, Mauro Conti for their feedback.

13

REFERENCES

[1] S. Y. Chang, Y. Park, and A. Muralidharan, “Fast address hopping at the
switches: Securing access for packet forwarding in sdn,” in NOMS 2016
- 2016 IEEE/IFIP Network Operations and Management Symposium,
April 2016, pp. 454–460.

[2] R. Ricci, E. Eide, and The CloudLab Team, “Introducing CloudLab:
Scientific infrastructure for advancing cloud architectures and
applications,” USENIX ;login:, vol. 39, no. 6, Dec. 2014. [Online].
Available: https://www.usenix.org/publications/login/dec14/ricci

[3] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random
host mutation: Transparent moving target defense using software
defined networking,” in Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, ser. HotSDN ’12. New
York, NY, USA: ACM, 2012, pp. 127–132. [Online]. Available:
http://doi.acm.org/10.1145/2342441.2342467

[4] P. Kampanakis, H. Perros, and T. Beyene, “SDN-based solutions for
Moving Target Defense network protection,” in A World of Wireless,
Mobile and Multimedia Networks (WoWMoM), 2014 IEEE 15th Inter-
national Symposium on, June 2014, pp. 1–6.

[5] B. Awerbuch, A. Richa, and C. Scheideler, “A jamming-resistant MAC
protocol for single-hop wireless networks,” in PODC, Aug. 2008, pp.
45–54.

[6] S.-Y. Chang, Y.-C. Hu, and N. Laurenti, “SimpleMAC: A jamming-
resilient mac-layer protocol for wireless channel coordination,”
in Proceedings of the 18th Annual International Conference on
Mobile Computing and Networking, ser. Mobicom ’12. New
York, NY, USA: ACM, 2012, pp. 77–88. [Online]. Available:
http://doi.acm.org/10.1145/2348543.2348556

[7] S. Y. Chang and Y. C. Hu, “SecureMAC: Securing wireless medium
access control against insider denial-of-service attacks,” IEEE Transac-
tions on Mobile Computing, vol. 16, no. 12, pp. 3527–3540, Dec 2017.

[8] S. Lakshminarayana, J. S. Karachiwala, S.-Y. Chang, G. Revadigar,
S. L. S. Kumar, D. K. Yau, and Y.-C. Hu, “Signal jamming
attacks against communication-based train control: Attack impact and
countermeasure,” in Proceedings of the 11th ACM Conference on
Security & Privacy in Wireless and Mobile Networks, ser. WiSec ’18.
New York, NY, USA: ACM, 2018, pp. 160–171. [Online]. Available:
http://doi.acm.org/10.1145/3212480.3212500

[9] B. Muntwyler, V. Lenders, F. Legendre, and B. Plattner, “Obfuscating
ieee 802.15.4 communication using secret spreading codes,” in Wireless
On-demand Network Systems and Services (WONS), 2012 9th Annual
Conference on, Jan 2012, pp. 1–8.

[10] S.-Y. Chang, J. Lee, and Y.-C. Hu, “Noah: Keyed noise flooding for
wireless confidentiality,” in Proceedings of the 11th ACM Symposium
on QoS and Security for Wireless and Mobile Networks, ser. Q2SWinet
’15. New York, NY, USA: ACM, 2015, pp. 141–148. [Online].
Available: http://doi.acm.org/10.1145/2815317.2815329

[11] R. Pickholtz, D. Schilling, and L. Milstein, “Theory of spread-spectrum
communications–a tutorial,” IEEE Transactions on Communications, pp.
855–884, May 1982.

[12] M. Simon, J. Omura, R. Scholtz, and B. Levitt, Spread spectrum
communications handbook. McGraw-Hill: New York, Mar. 1994.

[13] M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “Short paper:
Reactive jamming in wireless networks: How realistic is the threat?”
in Proceedings of the Fourth ACM Conference on Wireless Network
Security, ser. WiSec ’11. New York, NY, USA: ACM, 2011, pp. 47–52.
[Online]. Available: http://doi.acm.org/10.1145/1998412.1998422

[14] M. Atighetchi, P. Pal, F. Webber, and C. Jones, “Adaptive use of network-
centric mechanisms in cyber-defense,” in Object-Oriented Real-Time
Distributed Computing, 2003. Sixth IEEE International Symposium on,
May 2003, pp. 183–192.

[15] E. Al-Shaer, Q. Duan, and J. H. Jafarian, “Random host mutation for
moving target defense.” in SecureComm, ser. Lecture Notes of the Insti-
tute for Computer Sciences, Social Informatics and Telecommunications
Engineering, A. D. Keromytis and R. D. Pietro, Eds., vol. 106. Springer,
2013, pp. 310–327.

[16] P. Mittal, D. Kim, Y. Hu, and M. Caesar, “Towards deployable
ddos defense for web applications,” CoRR, vol. abs/1110.1060, 2011.
[Online]. Available: http://arxiv.org/abs/1110.1060

[17] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis,
“Defending against hitlist worms using network address space
randomization,” in Proceedings of the 2005 ACM Workshop on Rapid

Malcode, ser. WORM ’05. New York, NY, USA: ACM, 2005, pp. 30–
40. [Online]. Available: http://doi.acm.org/10.1145/1103626.1103633

[18] M. Dunlop, S. Groat, W. Urbanski, R. Marchany, and J. Tront, “Mt6d:
A moving target ipv6 defense,” in MILITARY COMMUNICATIONS
CONFERENCE, 2011 - MILCOM 2011, Nov 2011, pp. 1321–1326.

[19] M. Albanese, A. De Benedictis, S. Jajodia, and K. Sun, “A moving
target defense mechanism for manets based on identity virtualization,”
in Communications and Network Security (CNS), 2013 IEEE Conference
on, Oct 2013, pp. 278–286.

[20] D. Kewley, R. Fink, J. Lowry, and M. Dean, “Dynamic approaches to
thwart adversary intelligence gathering,” in DARPA Information Surviv-
ability Conference amp; Exposition II, 2001. DISCEX ’01. Proceedings,
vol. 1, 2001, pp. 176–185 vol.1.

[21] J. Xu, Z. Kalbarczyk, and R. Iyer, “Transparent runtime randomization
for security,” in Reliable Distributed Systems, 2003. Proceedings. 22nd
International Symposium on, Oct 2003, pp. 260–269.

[22] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary
stirring: Self-randomizing instruction addresses of legacy x86
binary code,” in Proceedings of the 2012 ACM Conference on
Computer and Communications Security, ser. CCS ’12. New
York, NY, USA: ACM, 2012, pp. 157–168. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382216

[23] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “Flowguard: Building robust
firewalls for software-defined networks,” in Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, ser. HotSDN
’14. New York, NY, USA: ACM, 2014, pp. 97–102. [Online].
Available: http://doi.acm.org/10.1145/2620728.2620749

[24] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras,
and V. Maglaris, “Combining openflow and sflow for
an effective and scalable anomaly detection and mitigation
mechanism on {SDN} environments,” Computer Networks,
vol. 62, no. 0, pp. 122 – 136, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128613004003

[25] Y. Park, S.-Y. Chang, and L. M. Krishnamruthy, “Watermarking for
detecting freeloader misbehavior in software-defined networks,” in Pro-
ceedings of the International Conference on Computing, Networking,
and Communications, ser. ICNC ’16. IEEE, 2016.

[26] R. Jin and B. Wang, “Malware detection for mobile devices using
software-defined networking,” in Proceedings of the 2013 Second
GENI Research and Educational Experiment Workshop, ser. GREE ’13.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 81–88.
[Online]. Available: http://dx.doi.org/10.1109/GREE.2013.24

[27] J. Li, S. Berg, M. Zhang, P. Reiher, and T. Wei, “Drawbridge:
Software-defined ddos-resistant traffic engineering,” in Proceedings
of the 2014 ACM Conference on SIGCOMM, ser. SIGCOMM ’14.
New York, NY, USA: ACM, 2014, pp. 591–592. [Online]. Available:
http://doi.acm.org/10.1145/2619239.2631469

[28] M. Shtern, R. Sandel, M. Litoiu, C. Bachalo, and V. Theodorou,
“Towards mitigation of low and slow application ddos attacks,” in Cloud
Engineering (IC2E), 2014 IEEE International Conference on, March
2014, pp. 604–609.

[29] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation, ser. nsdi’13. Berkeley,
CA, USA: USENIX Association, 2013, pp. 29–42. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2482626.2482631

[30] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard:
Scalable and vigilant switch flow management in software-defined
networks,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, ser. CCS ’13. New
York, NY, USA: ACM, 2013, pp. 413–424. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516684

[31] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack
detection using nox/openflow,” in Local Computer Networks (LCN),
2010 IEEE 35th Conference on, Oct 2010, pp. 408–415.

[32] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending sdns from
malicious administrators,” in Proceedings of the Third Workshop on
Hot Topics in Software Defined Networking, ser. HotSDN ’14. New
York, NY, USA: ACM, 2014, pp. 103–108. [Online]. Available:
http://doi.acm.org/10.1145/2620728.2620750

[33] X. Liu, X. Yang, and Y. Lu, “To filter or to authorize: Network-layer
dos defense against multimillion-node botnets,” SIGCOMM Comput.

14

Commun. Rev., vol. 38, no. 4, pp. 195–206, Aug. 2008. [Online].
Available: http://doi.acm.org/10.1145/1402946.1402981

[34] K. Argyraki and D. R. Cheriton, “Active internet traffic filtering: Real-
time response to denial-of-service attacks,” in Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ser. ATEC ’05.
Berkeley, CA, USA: USENIX Association, 2005, pp. 10–10. [Online].
Available: http://dl.acm.org/citation.cfm?id=1247360.1247370

[35] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing internet
denial-of-service with capabilities,” SIGCOMM Comput. Commun.
Rev., vol. 34, no. 1, pp. 39–44, Jan. 2004. [Online]. Available:
http://doi.acm.org/10.1145/972374.972382

[36] A. Yaar, A. Perrig, and D. Song, “Siff: a stateless internet flow filter
to mitigate ddos flooding attacks,” in Security and Privacy, 2004.
Proceedings. 2004 IEEE Symposium on, May 2004, pp. 130–143.

[37] X. Yang, D. Wetherall, and T. Anderson, “A dos-limiting
network architecture,” in Proceedings of the 2005 Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communications, ser. SIGCOMM ’05. New York,
NY, USA: ACM, 2005, pp. 241–252. [Online]. Available:
http://doi.acm.org/10.1145/1080091.1080120

[38] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs,
and Y.-C. Hu, “Portcullis: Protecting connection setup from
denial-of-capability attacks,” SIGCOMM Comput. Commun. Rev.,
vol. 37, no. 4, pp. 289–300, Aug. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1282427.1282413

[39] D. Kim, J. T. Chiang, Y.-C. Hu, A. Perrig, and P. R. Kumar, “Craft:
A new secure congestion control architecture,” in Proceedings of the
17th ACM Conference on Computer and Communications Security, ser.
CCS ’10. New York, NY, USA: ACM, 2010, pp. 705–707. [Online].
Available: http://doi.acm.org/10.1145/1866307.1866404

[40] M. S. Kang and V. D. Gligor, “Routing bottlenecks in the internet:
Causes, exploits, and countermeasures,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’14. New York, NY, USA: ACM, 2014, pp. 321–333.
[Online]. Available: http://doi.acm.org/10.1145/2660267.2660299

[41] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in
Proceedings of the 2013 IEEE Symposium on Security and Privacy,
ser. SP ’13. Washington, DC, USA: IEEE Computer Society, 2013,
pp. 127–141. [Online]. Available: http://dx.doi.org/10.1109/SP.2013.19

[42] L. Lamport, “Password authentication with insecure communication,”
Commun. ACM, vol. 24, no. 11, pp. 770–772, Nov. 1981. [Online].
Available: http://doi.acm.org/10.1145/358790.358797

[43] N. Haller, “The s/key one-time password system,” in In Proceedings of
the Internet Society Symposium on Network and Distributed Systems,
1994, pp. 151–157.

[44] H. Padekar, Y. Park, H. Hu, and S.-Y. Chang, “Enabling dynamic
access control for controller applications in software-defined networks,”
in Proceedings of the 21st ACM on Symposium on Access
Control Models and Technologies, ser. SACMAT ’16. New
York, NY, USA: ACM, 2016, pp. 51–61. [Online]. Available:
http://doi.acm.org/10.1145/2914642.2914647

[45] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” SIGOPS Oper. Syst.
Rev., vol. 36, no. SI, pp. 147–163, Dec. 2002. [Online]. Available:
http://doi.acm.org/10.1145/844128.844143

[46] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “Efficient authentication
and signing of multicast streams over lossy channels,” in Proceeding
2000 IEEE Symposium on Security and Privacy. S P 2000, 2000, pp.
56–73.

[47] D. Liu and P. Ning, “Multilevel tesla: Broadcast authentication for
distributed sensor networks,” vol. 3, pp. 800–836, 01 2003.

[48] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vswitch,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15). Oakland, CA: USENIX Association, 2015, pp. 117–130. [On-
line]. Available: https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/pfaff

[49] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood, “On controller performance in software-defined
networks,” in Proceedings of the 2Nd USENIX Conference on
Hot Topics in Management of Internet, Cloud, and Enterprise

Networks and Services, ser. Hot-ICE’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2228283.2228297

[50] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
“Advanced study of sdn/openflow controllers,” in Proceedings of the 9th
Central Eastern European Software Engineering Conference in Russia,
ser. CEE-SECR ’13. New York, NY, USA: ACM, 2013, pp. 1:1–1:6.
[Online]. Available: http://doi.acm.org/10.1145/2556610.2556621

Sang-Yoon Chang is an Assistant Professor at
the Computer Science Department at University of
Colorado Colorado Springs (UCCS). His research
is in networking, wireless/mobile, systems security,
and applied cryptography with focuses on cyber-
physical systems, software-defined networking, and
distributed consensus protocols/blockchain. Sang-
Yoon received his B.S. and Ph.D. degrees from the
department of Electrical and Computer Engineer-
ing in University of Illinois at Urbana-Champaign

(UIUC) in 2007 and 2013, respectively, and worked as a postdoctoral fellow
at Advanced Digital Sciences Center (ADSC) before joining UCCS.

Younghee Park is an assistant professor in Com-
puter Engineering of San Jose State University. She
received her Ph.D. in Computer Science from North
Carolina State University in 2010. Her main research
is network and system security with an empha-
sis on malware detection, insider attacks, botnets,
traceback to detect attacks. She has served as the
Kordestani Endowed Chair in the College of Engi-
neering at SJSU in 2016 and 2017 as a distinguished
research professor. She received BEST Paper Award

at ACM SIGCSE 2018 and Best Paper Award-Honorable Mention Award at
the 21st ACM SACMAT in 2016. She also received the faculty excellence
award in scholarship in College of Engineering at SJSU in May 2018. She
is a coordinator for the Cybersecurity Certificates program in the Computer
Engineering Department at SJSU supported by the National Information
Assurance Education and Training Program (NIETP). Since 2016, she has
served as Center Executive at the Center for Smart Technology, Computing,
and Complex Systems (STCCS), a multidisciplinary research group of faculty
and researchers in the area of the Smart City.

Bhavana Babu Ashok Babu is a research assistant
at San Jose State University pursuing master’s in
computer engineering. She received her bachelor’s
degree in India from Visveswaraiah Technological
University. Her research is based on security in
Software-Defined Networking. She has worked on
projects such as moving target defense using IP ran-
domization and currently working on queue config-
uration and bandwidth control using Ryu controller.
She has also worked in India in the software domain

in a company called Societe Generale Global Solution Center.

