
Uncle-Block Attack: Blockchain Mining Threat

Beyond Block Withholding for Rational and

Uncooperative Miners

Sang-Yoon Chang1, Younghee Park2, Simeon Wuthier1, and
Chang-Wu Chen3

1 University of Colorado Colorado Springs, Colorado Springs CO, USA
2 San Jose State University, San Jose CA, USA

3 AMIS, Taipei, Taiwan

Abstract. Blockchain-based cryptocurrency replaces centralized insti-
tutions with a distributed network of Internet-based miners to gener-
ate currency and process financial transactions. Such blockchain systems
reach consensus using proof of work (PoW), and the miners participating
in PoW join mining pools to reduce the variance for more stable reward
income. Prior literature in blockchain security/game theory identified
practical attacks in block withholding attack (BWH) and the state of
the art fork-after-withholding (FAW), which have the rational and un-
cooperative attacker compromise a victim pool and pose as a PoW con-
tributor by submitting shares but withholding the blocks. We advance
such threat strategy (creating greater reward advantage to the attackers
at the expense of the other miners in the victim pool) and introduce the
uncle-block attack (UBA) which exploits uncle blocks for block withhold-
ing. We analyze UBA’s incentive compatibility and identify and model
the critical systems- and environmental- parameters which determine the
attack’s impacts. Our analyses and simulations results show that a ra-
tional attacker is always incentivized to launch the UBA attack strategy
(over FAW or protocol compliance) and that UBA is effective even in
the unfavorable networking environment (in contrast, in such case, FAW
is reduced to the suboptimal BWH attack and does not make use of the
withheld block).

Keywords: Blockchain · Cryptocurrencies · Distributed consensus protocol ·
Security · Mining game · Block withholding attack

1 Introduction

Blockchain technology builds a distributed ledger comprised of irrevocable trans-
actions and has emerged as the backbone technology for digital cryptocurrencies,
which govern, generate, and process the financial transactions in a distributed
manner (as opposed to relying on a centralized bank), e.g., Bitcoin [17] and

1

Ethereum [5, 21]. As of April 2019, the total market cap of the blockchain-based
cryptocurrencies is estimated to be more than $170B [3, 8].

Underlying blockchain is the consensus protocol so that all nodes agree on
the transactions on the ledger without relying on a trusted third party. The
most popular consensus algorithm is based on proof of work (PoW). The miners
participate in PoW to generate new currency and process the transactions and
are financially incentivized to so by the block rewards, the winnings from solving
the probabilistic PoW computational puzzles. To lower the variance of such
reward, the miners join and operate as mining pools to share the computational
power and the corresponding reward winnings.

PoW consensus protocol is driven by networking, as the found blocks need
to get propagated via broadcasting for “timestamping” [17] to determine which
block got mined first and will become a part of the blockchain. Because it is in
a distributed environment and due to the networking/propagation delays, there
can be collisions in the block findings, which results in forking. To improve fair-
ness and decentralization across nodes with varying networking environments,
blockchain systems incorporate uncle reward, which are partial rewards for the
blocks that got forked but did not become part of the main chain. (We explain
the relevant background in blockchain in greater details in Section 2.)

According to the consensus protocol, the miner submits a PoW solution once
it is found. However, previous research identified practical and relevant attacks
which have the attacker compromise a victim mining pool and undermine the
winnings by posing as a PoW contributor without actually contributing (the
attacker also has a different reward channel in its main pool/solo mining, in
which it does not need to share the reward with others, unlike the victim pool).
In such attacks, the attacker mines the block and controls the timing of the
block submission (including possibly permanently withholding the block, which
effectively corresponds to discarding the found block) as opposed to following
the protocol and immediately submitting the found block. These attacks are in
the forms of block-withholding (BWH) attack and fork-after-withholding (FAW)
attack. FAW attack, in particular, builds on both selfish mining and BWH and
improves the attacker’s reward by submitting the block found in the victim
mining pool when there is a fork/collision with a third-party miner, making the
threat more relevant to the incentive-driven rational miners.

In this paper, we advance the withholding-based attacks and introduce the
uncle-block attack (UBA) which extends the block-withholding to uncle blocks.
UBA amplifies the state of the art in FAW attack by increasing the attacker
reward at the expense of the other miners within the victim pool. UBA not only
builds on FAW (inheriting the attacker-desirable properties of FAW) but is also
effective independent to the networking environment of the attacker (i.e., effec-
tive even when the attacker loses the forking race, in contrast to FAW). While
the UBA attack undercuts the rewards of the other miners in the victim pool
(and thus corresponds to the strategy which will be taken by a malicious at-
tacker focusing on sabotaging the victims), we extend our threat model further
to include the uncooperative and rational attackers and analyze the attacker’s

2

incentives in financial rewards for UBA. Our analyses show that the attacker
maximizes its reward by launching UBA attack over the state of the art in FAW
or the protocol-complying honest mining. Our reward/payout analyses for the
attacker uses lower bounds to be conservative in measuring the attacker’s per-
formances. Nevertheless, we show significant gains and incentives for launching
UBA. While we use formal modeling and analyses to abstract away from the
implementation details and deliver fundamental insights about the advanced
withholding threat, our model constructions and analyses are driven by the real-
world blockchain implementations and our findings are relevant and applicable
to the current practice/design of blockchains.

The rest of the paper is organized as follows. Section 2 provides background
information about blockchain relevant to our work; Section 3 discusses about the
prior work in blockchain mining security; and Section 4 establishes the threat
model and the attack requirements (the same as those for BWH and FAW).
We construct our mining game model in Section 5 and use it to recap BWH
attack and FAW attack. Afterward, we introduce UBA and analyze its reward
in Section 6. We analyze the attacker’s dynamic behaviors (optimizing its in-
filtration of the victim pool and the computational power use) and its attack
payouts/rewards in simulations in Section 7. We then discuss about the potential
countermeasures in Section 8 and conclude the paper in Section 9.

2 Background in Blockchain Mining

The PoW consensus comprises of two parts: a probabilistic PoW based on solving
a computational puzzle (finding the preimage/input of a one-way hash function)
yielding a valid block, and the submission/broadcasting of the block via peer-to-
peer (p2p) networking (so that the others update their blockchain ledgers with
the block to reach a consensus).

Miners execute the consensus protocol and are incentivized to do so because
solving the computational puzzle and consequently registering a block on the
blockchain generates financial rewards (new currency and the transaction fees).
The consensus protocol is based on a race and only the miner solving the PoW
puzzle and submitting/broadcasting the corresponding block the earliest wins
the corresponding reward in a round; once that happens, the other miners start
a new round of mining by updating the chain with the newly found block. While
the PoW consensus is designed to be computationally fair (distributing the re-
ward winning proportionally to the computational power of the miners), the
PoW miners experience high variance when finding blocks and winning rewards.
Because a miner is competing with a global-scale group of other miners and the
mining difficulty gets adjusted accordingly, finding a block is very sporadic and
bursty.

To lower the variance and to get a more stable stream of reward income,
miners form a pool to combine their computational power to share the power
as well as the mining reward winnings. The increased computational power by

3

pooling them together increases the occurrence of winning a block whose reward
gets split across the pool miners according to their computational contributions.
To estimate each of the miner’s contributions, mining pool samples more PoW
solutions by introducing shares, which correspond to solving the same computa-
tional puzzle with the same block header as the block but with easier difficulty;
a block solution is a share but a share is not necessarily a block. The reward dis-
tribution within a pool using such shares is also designed to be computationally
fair. To manage the mining pool, the pool manager keeps track of the individual
miner members’ contributions, registers/broadcasts the block upon its discovery,
and distributes the reward to the pool members. Joining the mining pool is pop-
ular, e.g., as of July 2018, the computationally-largest mining pool (BTC.com)
has 24% of the computational power for the entire Bitcoin mining network, and
eight mining pools collectively have greater than 85%.

Forking occurs when two block solution propagations result in a collision
(i.e., some nodes receive one block earlier than the other while the other nodes
receive the other block first), creating a partition between the miners on which
block to use for its impending round of mining. Forking gets resolved by having
the miners choose the longest chain, e.g., if one partition finds another new block
and propagates that to the other partition, then the miners in the other partition
accept that chain which is one block longer than the one that they have been
using4. The block that causes a fork but does not get registered as the main
block is called the uncle block (as opposed to the parent block registered on the
chain)5. Blockchain systems provide partial reward for uncle blocks to increase
fairness between the miners, i.e., reduce the effect of the networking discrepancy.

3 Related Work in Mining Security

For uncooperative miners (willing to diverge from the set protocol), sophisticated
attacks exist to further increase the mining reward beyond following the protocol

4 In significantly rarer cases, an intentional hard fork retains the partition and intro-
duces a new branch/chain. For example, since the launch of the main chain in 2016
(“Homestead”), Ethereum had five hard forks, including three hard forks in 2016 (in-
cluding the infamous DAO hack incident which split Ethereum and Ethereum Clas-
sic), one in 2017, and one in 2019. Intentional soft forks are also used for upgrading
the blockchain protocols and rules but, in contrast to hard forks, are backward-
compatible to the clients running the older softwares. Such intentional forks are out
of scope for this paper and we focus on the accidental forks caused by the block
propagation discrepancy in networking, because the accidental forks occur signifi-
cantly more frequently than the intentional forks and because the intentional forks
are treated differently than the accidental forks which get automatically resolved as
described by the longest-chain rule without software updates.

5 This terminology for the blocks which are valid solutions but did not become the
main blocks can differ across implementations, e.g., in Bitcoin, they are called orphan
blocks. We uniformly call them uncle blocks for simplicity but introduce relevant
variables, including the reward amount, to generalize it across implementations.

4

of timely block submission. These attacks on the consensus protocol actively
control the timing of the block submission, including permanently withholding
the submission in certain situations. Selfish mining withholds a block so that
the miner can get a heads-start on computing the next block and have the rest
of the miners discard and switch from the blocks that they were mining [10, 13,
19]. Blockchain’s confirmation mechanism (which waits for multiple blocks to
get mined before finalizing the transactions) resists selfish mining because the
probability of successful selfish mining decreases exponentially with the number
of blocks required for confirmation [17].

There are further attacks in cases of the mining pool. Block-withholding attack
(BWH) withholds the mined block in mining pools in order to increase the
attacker’s reward at the expense of the rest of the pool member miners [18]. In
BWH, to sabotage the victim mining pool, the attacker simply never submits
the found block while submitting the shares. As a consequence, the attacker
still reaps the benefits from submitting the share solutions to the victim pool
(pretending to contribute and getting the credit for it) while never actually
contributing to the pool (since it never submits the actual block solution which
will benefit the victim pool). The attacker also increases the expected reward in
its main pool by launching BWH on the infiltrated victim pool.

A recent fork-after-withholding (FAW) attack [14] combines selfish mining
and BWH. FAW builds on selfish mining and BWH but creates intentional forks
in cases when there is a block being broadcasted by another pool with which the
attacker has no association. In other words, while always submitting the shares
to gain greater payout on the victim pool, the attacker withholds the found
block and either discards it (if the attacker’s main pool finds another block or if
another miner from the victim pool finds a block) or submits it only when there
is another competing block that is being propagated by another third-party pool
(creating an intentional fork). FAW attack is significant because it forgoes the
miner’s dilemma (which establishes that the Nash equilibrium between multiple
pools is to launch block-withholding attack against each another, which results in
suboptimal performances for all the pools, motivating the pools to be cooperative
with each other [9]); there is a real incentive (unfair reward gain) for rational
miners to launch FAW attack.

Other researchers investigate the emerging security issues as the block re-
ward transitions to only variable transaction-fees (as opposed to also including
the base fees that generate new currencies) [20, 6]. The variance of the block
reward amount incentivizes the attackers to selectively mine the blocks in time
(e.g., there are “mining gaps” when the attackers decide not to mine). Although
related, our work is orthogonal to these issues since the attacker in our work
maximizes its reward advantage given the block reward.

4 Threat Model: Uncooperative and Rational Attacker

We distinguish between honest miners and attackers by whether or not they
are cooperative and comply with the consensus protocol. More specifically, while

5

honest miners submit/broadcast the blocks once they are found, attackers control
the timing of the consensus-puzzle submissions/blocks by introducing a delay
between the time when the block was found and when they are submitted.

We investigate the attacks launched by the miners, as opposed to the pool
managers. Compromising the pool as a miner is easier than misbehaving as a
mining pool manager (which is trusted by and interact with all the miners within
the mining pool and is therefore in constant scrutiny). Compromising the pool
as a miner is especially easy in a public blockchain (as opposed to permissioned
or private blockchain) and against an open pool, in which registration and Sybil
attack (generating/using multiple identities) are easy and even encouraged for
anonymity.

The attacker is also rational and driven by the financial incentives of block
rewards. Therefore, we study whether the attackers strategies are compatible
to such incentives; the attack is irrelevant if it does not increase the attacker’s
reward because the attacker will choose not to use such the suboptimal strategy.
While the attacker is primarily driven by its own self interest, its unfair advantage
negatively affects the other miners of the blockchain because the finite reward
is shared among the miners (i.e., if a miner wins more, then the other miners
win less). Our threat model therefore encompasses the malicious threat model
(where the attacker’s goal is to sabotage or degrade the performances of the
other miners) but can also be extended to the uncooperative and rational miners
(who merely want to increase their own rewards without necessarily harming the
others).

We assume the threat model of BWH attack and FAW attack, in which the
attacker compromises multiple pools and separates the main pool vs. the victim
pool. The attacker behaves honestly in the main pool while it can launch an
attack by diverging from the protocol in the victim pool. As a realistic setup, we
assume that the main pool is comprised of the attacker only (which is effectively
solo mining without joining a pool); the attacker shares the reward winnings in
the victim pool while there is no sharing and the attacker takes all the rewards
in the main pool. Our model also generalizes to the case of multiple pools, e.g.,
the main pool or the victim pool can be a collection of mining pools, since the
PoW consensus is power-fair, as opposed to identity-fair, as is captured in our
mining-game model in Section 5.

The attacker setting up main pool vs. victim pool is realistic since setting
up a miner account or joining a mining pool are generally easy. This is because
public blockchain, such as those used in cryptocurrencies, has loose control of
identities and is designed for anonymity (which is in contrast to the permissioned
blockchains in other emerging applications), e.g., Nakamoto/Bitcoin suggests us-
ing new accounts for new transactions [17]. For example, in 2014, Eligius became
a victim pool of the BWH attack and lost 300 BTC, which got detected primar-
ily because the attacker only used two accounts for the attack (which resulted
in a detection of abnormal behavior where the accounts submitted only shares
but no blocks for too long of a time).

6

5 Mining Game

5.1 Mining and Computational Power Model

To investigate the incentive compatibility of the attacks, we model the min-
ing game between the miners and quantify the expected reward. We build on
the approaches of the prior literature analyzing the withholding-based attacks,
e.g., [14, 15], but we construct the model to enable the analyses of the novel UBA
attack we introduce. The reward distributed depends on the miner’s computa-
tional power, and we normalize the following variables with respect to the entire
mining network’s computation power. i.e., the total mining power has a power of
1. The attacker’s computation power is α while the victim pool’s mining power
without the attacker’s power is β, so 0 ≤ α+β ≤ 1. The attacker splits its power
between its main pool (honest mining) and the victim pool (willing to launch
mining attack strategies to increase the attacker’s reward at the expense of the
fellow miners in the victim pool), and the fraction of the attacker’s power for
infiltration of the victim pool is τ (where 0 ≤ τ ≤ 1). Therefore, the attacker’s
power on the victim pool is τα, and the total mining power on the victim pool is
τα+β even though the attacker’s power may not contribute to the pool earning
reward depending on the attack strategies (honest mining is within the attacker’s
options, and the attacker will do so legitimately contributing to the pool earning
if honest mining is the reward-optimal strategy for the attacker). For example,
in the simpler BWH attack, the attacker does not submit block at all in the
victim pool so the actual power contributing to block earnings of the pool is
only β, while the attacker still earns the mining credit and the corresponding
reward through share submissions and the reward earning gets split by τα+ β
within the victim pool.

In FAW attack, the attacker submits the withheld block on the victim pool
only when another block by a third-party pool is submitted and getting propa-
gated. The attacker is motivated to do so and cause a fork because the attacker
does not get any reward if a third-party pool wins the block. c denotes the prob-
ability that the attacker’s block will get rewarded as opposed to the third-party
pool’s, and c depends on the networking state/topology between the two block
submissions.

A miner’s expected reward normalized by the reward amount is denoted with
R. For example, if an attacker behaves honestly, its expected reward (Rhonest)
is proportional to its computational power by the design of the PoW consensus
and the mining pools,

Rhonest = α (1)

The following summarizes the variables used for the reward analyses of the
block-withholding threats (more complexity and variables are added as we use
them to describe the mining pool game and analyze the uncle-block attack).

α: Attacker’s computational power
β: Computational power of the victim pool

7

τ : Fraction of attacker’s power for infiltration of victim
c: Probability that the attacker wins the reward given that there is a

fork (collision with another block propagation)

5.2 BWH Attack and FAW Attack Analyses

To provide baselines and examples of the use of our model in Section 5.1, we
analyze the expected reward of BWH and FAW. This section adapts the prior
work in FAW [14], and we only highlight the parts which are the most relevant
to our work in this section.

For BWH, the attacker has two possible events for earning a positive reward
(in other events, the attacker earns zero reward). The first event is when the
attacker finds a block in its honest-mining main pool (the event A) while the
second event corresponds to when another miner from the victim pool, not the
attacker, finds a block (B). Because the probability of winning a block is pro-
portional to the computational power spent on mining the block and because
1−τα amount of power from all miners actually contributes to finding the block
(the attacker uses the other τα to still compute the PoW but only submit shares

while withholding the blocks), the probability of A is (1−τ)α
1−τα and the probability

of B is β
1−τα . Assuming negligible probability for natural forking, the expected

reward for block-withholding attack normalized by the reward amount (RBWH)
is:

RBWH = E[R|A] · Pr(A) + E[R|B] · Pr(B)

= 1 · (1− τ)α

1− τα
+

τα

β + τα
· β

1− τα

=
(1− τ)α

1− τα
+

τα

β + τα
· β

1− τα
(2)

The FAW attack builds on BWH but provides an extra channel for at-
tacker reward. In addition to the events A and B, the attacker can earn reward
by broadcasting the withheld block when a third-party miner outside of the
attacker-involved main pool and victim pool finds a block, causing a fork and
hence the name fork-after-withholding (FAW). This event of the attacker finding
a block and a third-party miner finding a block is C. The expected reward for
FAW attack normalized by the reward amount (RFAW) is:

RFAW = E[R|A] · Pr(A) + E[R|B] · Pr(B) + E[R|C] · Pr(C)

= 1 · (1− τ)α

1− τα +
τα

β + τα
· β

1− τα + 1 · c · τα

β + τα
· τα1− α− β

1− τα

=
(1− τ)α

1− τα +
τα

β + τα

(
β

1− τα + cτα
1− α− β

1− τα

)
(3)

We summarize and list the three events which yield the attacker positive
rewards, as we also use them for our analyses of the rewards for UBA:

8

A: Attacker’s main pool finds a block
B: Another miner from the victim pool finds a block
C: Third-party miner finds a block

6 Uncle-Block Attack

Uncle-block attack (UBA) builds on the FAW attack but exploits the uncle
blocks, which are blocks which caused fork but did not eventually get selected as
the main block on the blockchain. In UBA, the attacker submits all its withheld
blocks at the end of the round (when any block gets propagated). This strategy
is different from FAW in that the attacker still submits the withheld block in the
events A and B, as opposed to not submitting it as in BWH/FAW attack. This
results in the attacker receiving two blocks worth (one main block and one uncle
block) of rewards. In addition, uncle-block attack increases the reward in the
event C because the block which does not become the main block (corresponding
to the 1− c probability in Section 5.1) also gets rewarded by the uncle reward.

Uncle block rewards (rewarding multiple blocks in a round) results in greater
complexity in the mining game and yields the vulnerability for UBA. For exam-
ple, one can envision an attacker continue to mine using the same block header
until it exhausts the reward in that round (although this turns out to be sub-
optimal if uncle block has less rewards than the main blocks according to our
analyses). In the rest of the section, we introduce the UBA strategy, establish
that a non-attacker who does not control/vary the timing of the block sub-
missions is incentivized to move on to the next round (as opposed to staying
within the round for uncle rewards), and analyze the optimal miner strategy for
the attacker controlling the timing of the submissions. Using these insights, we
also quantify the expected reward of UBA and provide a lower bound that is
independent of networking conditions (c), which is in contrast to FAW.

6.1 Uncle-Block Model: κ and λ

Suppose the blockchain provides non-zero rewards up to λ uncle blocks and
the reward per uncle block is κ. These are blockchain system parameters, for
example, λ = 2 and κ = 7

8 in Ethereum. In practice, these parameters have the
following constraints: λ <∞ limits the number of rewardable uncle blocks, and
κ < 1 bounds the uncle reward so that the main block is more valuable than
the uncle blocks. In each round, the blockchain will provide rewards which can
range from 1 (no fork and thus no uncle blocks) to 1 + λκ (1 main block and λ
uncle blocks get rewarded), normalized with respect to the main-block reward.

As a trivial result, UBA reduces to FAW if there is no uncle reward, i.e.,
λ = 0 or κ = 0. Therefore, we focus on the case when there is a positive uncle
reward, i.e., λ > 0 and κ > 0.

9

6.2 In Main Pool: Advance with New Block

In this section, we study the miner strategy in its main pool (no infiltration/gaming
against other pool members, for example, solo member in the pool). In its main
pool, a miner who found a block can still mine from the same block header in-
stead of advancing to the next round with the updated block. Despite the option,
the following lemma shows that the miner will be incentivized not to do so and
follow the consensus protocol to update the PoW header/execution and move on
to the next round if the main block yields greater reward than the uncle blocks.
In other words, a miner will choose to advance to the next round rather than
mining for the uncle block within the same round if κ < 1.

Lemma 1. The optimal miner strategy is the honest mining (following the pro-
tocol and advancing to the next round) in its main pool if κ < 1.

Proof. The inter-arrival time between the block findings follows an exponential
distribution and therefore the block finding process is memoryless, i.e., given
that the block is not found, the expected time to find a block is the same as
before. Therefore, the miner gains greater reward by mining for the main block
and not for the uncle block if κ < 1, and the reward-optimal mining strategy is
to update the block header whenever available.

6.3 Uncle-Block Attack Reward Analyses

We compute the expected reward of UBA, aggregated across the attacker-involved
pools and normalized by the reward amount, to show the effectiveness of the at-
tack. Assuming that the attacker updates the round/block header if it finds a
block in its honest-mining main pool (as is established to be reward-optimal in
Lemma 1), the following theorems provide insights about the reward of UBA.

Theorem 1. UBA outperforms FAW attack always (i.e., regardless of α, β, τ, c,
and κ) and its reward is greater than that in Equation 4.

Proof. In all events which provide positive reward to the attacker, A, B, and
C, finding an extra block within the same round (using the same block header)
only increases the attacker reward if the uncle reward is positive (κ > 0). The
attacker behavior/strategy changes from FAW in events A and B, and UBA
increases the reward from FAW (Equation 3) in all three event cases. In event A
(when the attacker finds a block in its honest-mining main pool), the attacker

rewards increases from FAW because there is a positive probability of τα · (1−τ)α
1−τα

that the attacker has been withholding another block in the victim pool (since
the main pool mining and the victim pool mining are independent). In such
case, the attacker has the control over both blocks and will prioritize the block
in the main pool by broadcasting the block in the main pool before the one in
the victim pool because, in contrast to the attacker’s solo mining in the main

10

RUBA = E[R|A] · Pr(A) + E[R|B] · Pr(B) + E[R|C] · Pr(C)

≥ (1 + κ
τα

β + τα
· τα) ·

(1 − τ)α

1 − τα
+ (1 + κ · τα)

τα

β + τα
·

β

1 − τα
+ [1 · c + κ · (1 − c)]

τα

β + τα
· τα

1 − α − β

1 − τα

=
(1 − τ)α

1 − τα
+

τα

β + τα

κ (τα)2

β + τα
·

(1 − τ)α

1 − τα
+ (1 + κτα)

β

1 − τα
+ [c + (1 − c)κ] τα

1 − α − β

1 − τα

 (4)

≥
(1 − τ)α

1 − τα
+

τα

β + τα

κ (τα)2

β + τα
·

(1 − τ)α

1 − τα
+ (1 + κτα)

β

1 − τα
+ κτα

1 − α − β

1 − τα

 (5)

pool, the reward in the victim pool gets shared by the other pool members (in
which case the uncle reward is κ τα

β+τα). In event B (when another miner in

the victim pool finds a block), the attacker could have also been withholding a
block in the victim pool, which occurs with a probability of τα · β

1−τα , in which
case the attacker gets rewarded for both the main block and the uncle block
(regardless of which block wins the fork racing) increases to (1 + κ) τα

β+τα from

just discarding/withholding the found block as in FAW/BWH yielding τα
β+τα in

Equation 3. In the event C (when the attacker has been withholding a block in
the victim pool and a third-party miner finds a block), unlike the FAW attack
which disregards uncle blocks, even if the attacker’s block does not become the
main block with a probability of (1− c) · τα 1−α−β

1−τα , it still gets rewarded by the
uncle reward of κ. Putting it together, Equation 4 presents the expected reward
for the UBA attack. The expected reward for launching UBA in Equation 4 is
greater than the FAW reward in Equation 3 for any α, β, τ, c.

Theorem 1 provides a lower bound of the UBA’s reward performance in Equa-
tion 4, which is greater than the FAW reward performance, providing greater
unfair reward and incentives for the attackers to conduct the attack. Equation 4
is a lower bound because we ignore the cases when the attacker-controlled victim
pool finds multiple blocks before the others do within the same round (which
provides positive reward increment if λ > 1). The bound is rather tight and close
to the actual expected reward because the ignored reward cases has exponen-
tially decreasing probabilities; more specifically, the probability of the attacker
finding x number of blocks in the victim pool within a round grows by (τα)x.

Theorem 2. UBA’s reward is greater than Equation 5, which is independent of
c, if κ ≤ 1.

Proof. From Equation 4, by assuming that κ ≤ 1 (i.e., the uncle reward is not
greater than the main reward), c + (1 − c)κ ≥ cκ + (1 − c)κ = κ, which yields
Equation 5. The inequality becomes an equality if κ = 1 (the uncle reward and
main reward have the same reward amount) or c = 0 (the attacker’s fork-causing
block always loses to the third-party block submissions).

Theorem 2 presents the UBA’s reward performance which is independent
of c, which is a critical environmental parameter in FAW and depends on the

11

networking topology and conditions of the attacker. (For example, FAW attack
converges to BWH if c → 0.) The magnitude of κ determines how close the
approximation is to the actual reward (the greater the κ the tighter the approx-
imation).

We use Equation 4 and Equation 5 for our simulation analyses and to quantify
the reward performances with actual numerical values. Despite using the lower
bound, we show that UBA’s effectiveness and impact are significantly superior to
the previously known withholding-based attacks, which state of the art is FAW.

To further maximize its reward, an attacker can dynamically control its con-
trol parameter τ since if it can know/estimate the rest of the environmental
parameters in α, β, and c and the system parameter in κ. The attacker can op-
timize its τ either by solving it mathematically to check for local maximum
(dR̄ubadτ = 0) or by using an optimization algorithm (e.g., gradient-descent algo-
rithm). To present a stronger threat, we assume such capability for the attacker,
e.g., the attacker can correctly estimate α, β, and c (e.g., α and β are publicly
accessible and Equation 5 enables optimization even if c cannot be estimated)
and study the impact of the attacker dynamically adapting its τ to improve its
reward in Section 7.2; we call the attacker’s reward when using the optimal τ
τ -capacity.

7 Simulation Analyses

7.1 Simulation Setup and Parameters

We analyze UBA using Monte-Carlo simulations and numerical analyses. Our
model introduces environmental parameters (α, β), attacker’s control param-
eters (τ), and the blockchain system control parameters (κ, λ). We focus our
analyses from the attacker’s perspective (observing the attacker’s reward) and
thus vary the attacker-controlled parameters (α, τ). This section explains the
simulations settings and the parameter choices to characterize the blockchain
system and the victim pool system under attack.

Our blockchain system simulation setup is influenced by modern blockchain
implementations, e.g., κ = 7

8 as is in Ethereum (the second largest cryptocur-
rency behind Bitcoin). We set λ = 1 which is the worse-case for the attacker’s re-
ward; any other reward-distribution algorithm supporting λ > 1, e.g., Ethereum,
provides greater reward to the attackers and therefore provides them with greater
incentives/impacts to conduct UBA. For the pool system, β = 0.24, which value
corresponds to the strongest mining pool in real-world mining at the time of
this writing [2]. The attacker attacking the stronger pool as its victim pool (as
opposed to a weaker pool of β → 0) provides greater reward and is aligned with
its incentive, which we verify in our simulations and agree with previous liter-
ature [14, 1]. These parameters are fixed unless otherwise noted (we vary the
variables to analyze the dependency and the impacts).

We also consider the 51% attack where the attacker can fully control the
blockchain if the attacker’s computational power exceeds the 50% of the net-

12

(a) Optimal τ for achieving τ -capacity (b) Dynamic strategy (τ -capacity) vs.
fixed strategy (no adaptation of τ), includ-
ing honest mining

Fig. 1: Uncle-Block Attack (UBA) Analyses

work’s. In our context, the 51% attacker can conduct withholding-based selfish
mining to reverse the transactions/blocks on the chain and to waste the other
miner’s computational resources on blocks which the attacker can reverse and
make stale. Therefore, we limit our analyses to 0 ≤ α ≤ 0.5 (the attacker is
capable of 51% attack if α > 0.5) in addition to the constraint of α+β ≤ 1 from
the definitions of α and β.

7.2 UBA: Dynamic Control and τ -Capacity

In this section, we analyze UBA, which generalizes FAW and BWH. The attacker
controls τ and can dynamically adapt it to the environment to maximize its
reward. We call such τ the optimal τ and the corresponding reward is the τ -
capacity. Figure 1(a) plots the optimal τ with respect to the attacker’s power
capability α while varying c. The attacker’s optimal τ quickly increases, i.e.,
the attacker spends more power on infiltration and on the victim pool and less
on the honest-behaving main pool, when the attacker has computational power
and participates in mining (α > 0). With greater c, the attacker’s power on the
victim pool increases, and there are more α-cases when the attacker’s optimal
τ is equal to one and the attacker only mines on the victim pool (no power
allocated on the main pool). c = 0 (i.e., the attacker always loses the forking
race against the third-party block submission) represents the worst-case in c and
yields the “c independent” reward in Equation 5. Despite this lower bound and
the unfavorable networking condition to the attacker, the attacker still focuses
larger amount of its power on the infiltration of the victim pool for maximizing
its reward. As long as the attacker has non-zero power (α > 0), the attacker
spends more than 85.8% of its power on infiltration regardless of c.

13

Fig. 2: UBA reward gain over FAW (the legend box includes the FAW reward
magnitude corresponding to 0% gain)

Figure 1(b) plots the attacker’s reward assuming dynamic τ control (τ -
capacity), fixed τ control, and honest mining (no withholding of blocks and
shares). The attacker’s reward increases with c, and varying c results in reward
values between the lowest in c = 0 (yielding c-independent reward in Equation 5)
and the highest in c = 1; for example, if α = 0.1, then the reward increases from
0.101 at c = 0 to 0.108 at c = 1 and, if α = 0.24, then the reward increases
from 0.250 at c = 0 to 0.278 at c = 1 (not shown in the plot). The dynamic
strategy choosing the optimal τ and reaching the τ -capacity always outperforms
the fixed strategy by definition of τ -capacity; to provide a representative fixed-
strategy reward analysis distinguishable in plots, Figure 1(b) includes data with
the suboptimal fixed strategy of τ = 0.5 (half of the power on the main pool and
the other half on the victim pool). Also, the uncle-block attack always outper-
forms the honest mining, which corresponds to τ = 0 (all computational power
in the main pool and no withholding). Moving forward, we assume that the at-
tacker is capable of dynamically adapting τ and achieving the τ -capacity, which
requires the correct estimation of α and β (e.g., the hash rate estimations are
publicly available, e.g., [2]).

7.3 UBA’s Impact Beyond the State of the Art

To compare UBA with FAW, we analyze the reward gain of UBA over FAW,
which is the difference between the rewards of the two attacks in %. As shown
in Figure 2, the reward gain increases with the uncle reward of κ. As the uncle
reward κ increases, UBA provides greater reward to the attacker and the reward

14

gain (the difference from the FAW) also increases; in fact, the UBA’s reward
converges to that of FAW when κ→ 0. The reward gain also increases with the
attacker’s power capability of α both in its magnitude and in the baseline of the
FAW attack reward (0% reward gain). In other words, not only the FAW reward
itself increases with α but also the UBA’s reward gain with respect to the FAW
increases; Figure 2 plots the results when α = 0.1, α = 0.24 (which is equal to
β), and α = 0.4.

8 Discussions for Potential Countermeasures

While our work introduces a new vulnerability/threat and sheds negative lights
on the uncle block system component of blockchain, we do not recommend
blindly discarding the uncle-block mechanism since it serves a useful purpose
in increasing fairness among the miners, especially for those experiencing net-
working discrepancies. Rather, we intend to inform the blockchain researchers
and developers for their parameter decisions and future design constructions.
Replacement mechanisms and their incorporation to the overall blockchain sys-
tem remains an open challenge for blockchain research and development. In this
section, we list the potential countermeasure ideas, which we consider to be
of relatively lower overheads for deployment except for those in Sections 8.5
and 8.2, to encourage research in preventing and mitigating UBA and other
withholding-based threats; the actual development, the system incorporation,
and the effective analyses against UBA are outside the scope of this paper.

8.1 Detection Based on Reward Behavior

The withholding-based threats result in abnormal reward behaviors. For exam-
ple, FAW or UBA increases the forking probability at the blockchain level. Such
phenomenon can be sensed and measured for attack detection, which can be
then used for mitigation purposes. While we identify behavior-based detection
as promising, we do not recommend relying on identity-based detection and
mitigation/blacklisting mechanisms, since the identity control is virtually non-
existent and it is cheap for the attacker to generate multiple identities/accounts
(Sybil attack) by the design of the permissionless blockchains.

8.2 Block Obfuscation and Oblivious Share

Building on the commit-and-reveal/commitment framework in cryptography,
oblivious share deprives the miner of the knowledge of whether a share is a
block (a share fulfilling a harder requirement) or a share until the miner submits
the share [18, 11]. The attacker (malicious or selfish miner) therefore cannot dy-
namically adopt the withholding-based threats which require distinguishing the
share and the block before submission. While effective against the withholding-
based attacks, such approach requires a protocol change (an additional exchange

15

between the mining pool manager and the miners) and is not backward compat-
ible (does not work with the existing system unless the protocol change/update
is made) [14, 15], causing protocol/communication overheads and making such
schemes undesirable for implementation to the blockchain network (which in-
cludes closed pools and solo miners, free of withholding vulnerabilities).

8.3 Payout and Reward Function Control

A low-overhead countermeasure is to modify the payout and reward functions, for
example, controlling the system parameters of κ and λ in our model. For example,
Bag and Sakurai proposes “special reward” for the block submissions [1] to
distinguish between block submissions and share submissions (different weights)
against block-withholding attack; introducing such parameter can also be useful
against UBA.

8.4 Share Timestamping

Timestamping the shares to ensure that the submission order is the same as their
finding [7] can help mitigating the withholding-based attacks. Such mechanism
can prevent from further share submissions after withholding blocks in UBA
and FAW (since the later shares become invalid if they are detected that they
have been found after the block) or aid the abnormal-detection mechanisms in
Section 8.1 by providing crucial timing/order information. SmartPool [16] also
uses timestamping to order/sort the shares but for different purpose (for its data
structure and to prevent duplicate share submissions).

8.5 Mining Pool Unification

A radical solution to the withholding-based threats is to have one mining pool
only so that there is a single mining pool for the miners to join. Having one
mining pool for the entire blockchain network eliminates the notion of sabo-
taging/victimizing a pool. A useful platform for implementing such solution
can be distributed mining pools, e.g., SmartPool [16] and P2Pool, which elim-
inates the centralized mining pool manager and replaces it with a distributed
program/computing, motivated to make the blockchain computing more decen-
tralized without the reliance on trusted third party (the mining pool manager
in this case) [12, 4]. In fact, SmartPool [16] envisions that their platform can be
used to unify the mining pools citing that the elimination of the mining pool
fee (charged by the centralized mining pool manager for their services) and the
reduced variance (compared to independent mining) will provide the incentives
for such vision. However, despite such desirable properties, it can be difficult to
enforce the change in behaviors in the miners and have all miners mine at the
designated pool, especially for an existing blockchain implementation with the
existing miners having already joined a pool; enforcing such pool restriction for
the miners can also be viewed as a violation of the freedom of the miners and is
not backward-compatible to the existing miners.

16

9 Conclusion

Blockchain uses PoW-based mining and mining pools to achieve consensus in
cryptocurrencies. From real-world blockchain and mining pool system implemen-
tations, we discover that uncle blocks can be used for exploits by a rational and
uncooperative attacker and introduce the uncle-block attack (UBA) strategy.
UBA advances and outperforms the prior withholding-based attack strategies
in FAW and BWH and is effective even in the case when the attacker has an
unfavorable networking environment (which limited the effectiveness of the pre-
vious state of the art attack strategy of FAW). Since UBA has the same attack
setup requirements as BWH (which already have reported incidents in the real-
world implementations), the more impactful UBA presents greater risk against
vulnerable blockchain systems.

While our work introducing the novel UBA threat strategy and focusing
on the threat/impact analyses raises issues on the current blockchain system
components (e.g., mining pool and uncle block), we do not recommend blindly
discarding them since they serve useful purposes. Rather, we intend to inform
the blockchain researchers and developers for their parameter decisions and fu-
ture design constructions. Countering UBA and other withholding threats and
depriving the rational attackers of the threat incentives remain open challenge
for blockchain research and development.

References

1. S. Bag and K. Sakurai, “Yet another note on block withholding attack on bitcoin
mining pools,” in ISC, ser. Lecture Notes in Computer Science, vol. 9866. Springer,
2016, pp. 167–180.

2. blockchain.com. Hash rate distribution. [Online]. Available:
https://www.blockchain.com/en/pools

3. ——. Market capitalization. [Online]. Available:
https://www.blockchain.com/charts/market-cap

4. J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten,
“Sok: Research perspectives and challenges for bitcoin and cryptocurrencies,” in
2015 IEEE Symposium on Security and Privacy, May 2015, pp. 104–121.

5. V. Buterin, “Ethereum: A next-generation smart contract and decen-
tralized application platform,” https://github.com/ethereum/wiki/wiki/White-
Paper, 2014, accessed: 2016-08-22. [Online]. Available:
https://github.com/ethereum/wiki/wiki/White-Paper

6. M. Carlsten, H. Kalodner, S. M. Weinberg, and A. Narayanan, “On the
instability of bitcoin without the block reward,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, ser.
CCS ’16. New York, NY, USA: ACM, 2016, pp. 154–167. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978408

7. S.-Y. Chang and Y. Park, “Silent timestamping for blockchain mining pool secu-
rity,” IEEE International Workshop on Computing, Networking and Communica-
tions (CNC), 2019.

17

8. CoinMarketCap. Top 100 cryptocurrencies by market capitalization. [Online].
Available: https://coinmarketcap.com

9. I. Eyal, “The miner’s dilemma,” in Proceedings of the 2015 IEEE Symposium
on Security and Privacy, ser. SP ’15. Washington, DC, USA: IEEE Computer
Society, 2015, pp. 89–103. [Online]. Available: https://doi.org/10.1109/SP.2015.13

10. I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnerable,”
CoRR, vol. abs/1311.0243, 2013.

11. ——, “How to Disincentivize Large Bitcoin Mining Pools,” June 2014.
12. A. Gervais, G. O. Karame, V. Capkun, and S. Capkun, “Is bitcoin a decentralized

currency?” IEEE Security Privacy, vol. 12, no. 3, pp. 54–60, May 2014.
13. A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun,

“On the security and performance of proof of work blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16. New York, NY, USA: ACM, 2016, pp. 3–16. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978341

14. Y. Kwon, D. Kim, Y. Son, E. Vasserman, and Y. Kim, “Be selfish and avoid
dilemmas: Fork after withholding (faw) attacks on bitcoin,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, ser.
CCS ’17. New York, NY, USA: ACM, 2017, pp. 195–209. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134019

15. L. Luu, R. Saha, I. Parameshwaran, P. Saxena, and A. Hobor, “On power splitting
games in distributed computation: The case of bitcoin pooled mining,” in 2015
IEEE 28th Computer Security Foundations Symposium, July 2015, pp. 397–411.

16. L. Luu, Y. Velner, J. Teutsch, and P. Saxena, “Smartpool: Practical de-
centralized pooled mining,” in 26th USENIX Security Symposium (USENIX
Security 17). Vancouver, BC: USENIX Association, 2017, pp. 1409–1426. [On-
line]. Available: https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/luu

17. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
18. M. Rosenfeld, “Analysis of bitcoin pooled mining reward systems,” CoRR, vol.

abs/1112.4980, 2011. [Online]. Available: http://arxiv.org/abs/1112.4980
19. A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining strategies

in bitcoin,” in Financial Cryptography and Data Security, J. Grossklags and B. Pre-
neel, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 515–532.

20. I. Tsabary and I. Eyal, “The gap game,” CoRR, vol. abs/1805.05288, 2018.
21. G. Wood, “Ethereum: A secure decentralised generalised transaction ledger

eip-150 revision (759dccd - 2017-08-07),” 2017, accessed: 2018-05-12. [Online].
Available: https://ethereum.github.io/yellowpaper/paper.pdf

18

