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Abstract. Modern train systems adopt communication-based train con-
trol (CBTC), which uses wireless communications to better monitor and
control the train operations. Despite the well-studied security issues in
wireless networking in information technology applications, security im-
plementations in trains have been lagging; many train systems rely on
security by obscurity and forgo well-established security practices such as
key updates. To secure train systems against increasingly evolving and
persistent attackers and mitigate key breach (which can occur due to
misuse of the key), we build a key update scheme, Key Update at Train
Stations (KUTS), that leverages the inherent physical aspects of train
operations (mobility/infrastructure-asymmetry between the stations and
the trains and the operational differences when the trains are at stations
and between the stations). Furthermore, by incorporating separation of
key chain and use and on the entities providing the key seeds, KUTS pro-
tects the key seeds for future updates against the breach of the current
key and is both key-collision irrelevant (thwarting known collision-based
threats on one-way random functions) and system-compromise resilient
(protecting the key secrecy even when the train system is compromised).
We theoretically analyze KUTS’s effectiveness, security strength, and
security properties. We also implement KUTS on various computing de-
vices to study the performance overhead.

1 Introduction

Communication-based train control (CBTC) uses wireless communication to de-
liver operational-control messages from the train to the track-side antenna, which
in turn relays the message to the operational control center (OCC) via wired con-
nection, and vice versa. In addition to being lightweight in infrastructure and
better supporting the mobility of the trains, CBTC enables finer granularity for
the train vehicle’s location sensing (which is a key parameter for train control)
than the traditional fixed-block technology (which uses discrete railway-track
segments for train localization). Consequentially, because CBTC enables greater
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customer transport efficiency (e.g., enabling more trains to get packed per dis-
tance during busy hours), train operators have increasingly deployed CBTC for
train systems.

While safety issues have been well-studied in train systems (some measures of
which can also mitigate communication availability issues) because of the phys-
ical consequences of failure, security in general has not garnered much attention
from the train system integrators and operators. They, instead, largely rely on
security by obscurity and that the protocols are confidential and proprietary.
While this does increase the barrier for security breach, especially for the type
of system that is not readily accessible by the public (e.g., unlike computers
or cars, not many people own/operate a train), history has shown that such
approach is insufficient against motivated and persistent cyber-attackers, e.g.,
Stuxnet malware discovered in 2010. The security-by-obscurity approach is fur-
ther challenged by the recent push to make the train systems interoperable across
European nations, which will involve effort to unify and standardize the prac-
tice/design and thus make the information more obtainable [1]. Previous failures
in train systems, e.g., whether accidental [2] or playful [3], demonstrate vulner-
abilities in train systems and let us wonder how much more of an impact so-
phisticated attackers can make on train operations. Also, the recent high-profile
security incidents in car applications that allowed remote (Internet-connected)
attackers to take control of car operations [4–7] are alarming to train operators
as well because while the wireless channels breached during these incidents de-
liver allegedly non-critical communications, e.g, software updates, the trains use
them for critical CBTC messages that directly control the train operations. Only
recently, there has been concerted effort into begin addressing security for train
communication systems [8–10].

To address the security gap of train communications, we study key manage-
ment within the train communication systems, which is a fundamental building
block of many secure communication protocols and practice. Given an initial
seed acting as a root of trust, we design a key update protocol, so that the key
remains fresh and secret. Our work not only makes the key breach significantly
harder but also limits the impact of such breach to the current key.

Our solution takes advantage of the unique physical aspects that are inherent
in train applications. In specific, trains transport people in two phases: at sta-
tions, the human customers embark or get off of the train vehicle, and between
stations, the train vehicle moves from one point to another to transport pas-
sengers and goods. Because the train at stations is static or moving much more
slowly and because the station contains more infrastructure, stations provide a
more tightly controlled environment for trains; CBTC implementations to track
the train vehicle locations also focus more on the latter periods when the trains
are travelling between the stations because such period generally presents greater
challenges (less resources/equipment along the rail tracks, more exposure to the
public wild, mobility of the train, and so on). We also align our scheme to these
two phases and update the key when the train is at the station and use the key
when the trains are between the stations, time-interleaving the key update and
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its use. We thus call our scheme key update at train stations (KUTS); however,
KUTS does not need to be implemented at all physical stations but only a subset
of the stations (KUTS stations).

KUTS is based on one-way functions that generate pseudo-randomness. How-
ever, it defeats the known output-collision-based threats on one-way functions
that significantly reduce the entropy (key strength) by introducing a two-layer
approach for updating the KUTS keys; the separation between the two layers
(one for the key seeds/chain and the other for the keys being used) also pro-
tect the future keys even when the currently used keys (for CBTC operations)
are compromised. Furthermore, KUTS uses key seeds from both the train and
the station (which are logically separate from each other) to increase resilience
against train-system compromise.

The rest of the paper is organized as follows. Section 2 describes related work
while Section 3.1 provides an overview of the train system, focusing on the part
that is relevant to our work. We build the corresponding system and threat mod-
els in Section 3.2 and Section 3.3, respectively. KUTS scheme (the key update
and the key failure detection) is described in Section 4, and we theoretically an-
alyze its security effectiveness and properties in Section 5. Furthermore, KUTS
is implemented and its efficiency and effectiveness analyzed in Section 6. Lastly,
we conclude our work in Section 7.

2 Related Work

As discussed in Section 1, security developments in train networks has lagged
other fields in computer security and has largely focus on wireless availabil-
ity, e.g., [1, 10, 11]. We study an orthogonal problem of key exchange, a critical
building block on which many security protocols in the digital domain rely. In
related work, Lopez and Aguado [12] sketch an improvement of the European
Rail Traffic Management System (ERTMS)’s outdated PKI system, which was
designed in the 1990s. Separately, Hartong et al. [13] also proposes key man-
agement requirements for train systems. Our work also studies key management
but, in contrast to prior work studying broader aspects of key management, we
focus on improving the security by introducing updates and dynamism on the
keys (with the update cycle synchronized with the physical train operations of
periodic station visits).

Our work is inspired by path authentication work in computer security.
Path authentication provides assurance that the object of the mechanism went
through a specific path by having the relaying entities (along that path) interact
with the object. It is used in the contexts of network routing [14–16] and device
manufacturing/supply-chain [17–20] to identify the path and avoid the tamper-
ing of the object. Although our work is similar in the sense that the relaying
nodes (stations) are stationary and help with the authentication via interactions
with the moving objects (trains), KUTS is fundamentally different because the
train’s mobility trajectory is defined by the railway tracks and its route pre-
established by the OCC while the stations have fixed geographical locations and
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are interwoven with many aspects of the train operations. In other words, while
the objective of path authentication in supply-chain and network-routing is to
ensure that the object travels through a path, the travel path actually serves as
a source of assurance in KUTS, as it is difficult to make the train diverge from
the path defined by the railway tracks.

KUTS uses two layers of pseudo-random generators (hash chains). Prior work
also adopt multiple layers of hashing, but the schemes are in different contexts
and the different layers are for orthogonality purpose, for example, multicast
source authentication work by Challal et al. [21] uses different layers for re-
dundancy control and chooses one layer from multiple layers for execution, and
Fredman et al. designed a scheme for efficient data lookup [22] that has differ-
ent layers to describe orthogonal dimensions of the pointer. In contrast, KUTS
uses multiple layers for greater security, and the layers are sequentially executed
to generate the key update. On the other hand, our cryptographic construc-
tion shares greater similarity with Ohkubo et al.’s use of two-layer hash chains
for RFID privacy [23]; their work aims to achieve forward security (preventing
backward tracking, so that the breach does not enable an attacker to trace the
data back through past events). However, in contrast to their work, we protect
both the future and the past keys from the key breach by separating the keys
being used for CBTC and the key seeds used for updates; furthermore, our con-
struction also involves multiple independent parties distributing the key seeds to
build resiliency against system compromise and is thus more complex. The use of
such cryptographic constructions in resource-constrained RFID tags shows great
promise that the overhead will be even more marginal for train applications, as
train-borne devices has much less hardware constraints and requirements.

Our instantiation of KUTS uses SHA-256 hash for the pseudo-random gen-
erator. To put the attacker’s cost in perspective, we discuss SHA-256’s use in
bitcoins and bitcoin mining in Section 4.2 and Section 6.2.

3 Train System Model

3.1 The Application System

Trains are designed to transport people from one geographical point to another.
And to provide the customers with more options for the geographical points
for their departure/arrival, trains operate on pre-established and fixed stations,
which are where the customers ride or get off the train. The stations are con-
nected with railway tracks, on which the trains operate and move, and thus the
train operational trajectories are fixed/limited and clearly defined by the rail-
way tracks. We make use of these physical aspects, e.g., the trains visit and stop
at the more controlled environment of stations, to build security in the cyber-
domain; for example, it is difficult for an attacker to physically take the train
and have it diverge from the railway tracks.

In CBTC, the operational control center (OCC) is actively involved in the
real-time control of all the trains on the line. However, since the centralized OCC
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Fig. 1. CBTC communication architecture. CBN stands for communication backbone
network, and the solid/dotted line represent wired/wireless connectivity, respectively.

controls many spatially distributed trains, it uses networking to communicate
with the trains; the OCC communicates its operational control messages, and
the trains report their statuses to the OCC. OCC thus has a central view of
the train line and know the time schedules/itineraries of the train operations
and the train vehicles’ locations at any given time, which can also be used
for safety (e.g., train collision avoidance) and better traffic management. To
enable real-time monitoring and control, the OCC and the trains communicate
periodically; the protocol has failed if the expected messages do not arrive in a
timely manner or if any of the channels conflict with each other and result in
inconsistency (train systems rely on redundancy for many logical operations),
which events can trigger fail-safe. Any deviation resulting in inconsistency will
be detected, regardless of the failure source or the cause, and we build on such
protocols to develop a failure-detection scheme in the endhosts’s (OCC’s and
trains’s) perspectives in Section 4.3.

Train operations rely more heavily on CBTC between stations than at sta-
tions, as discussed in Section 1, because of the following reasons. First, train’s
location (which is the most important sensing factor for CBTC) changes in faster
pace than at stations, requiring greater amount of information exchange between
the individual train and the OCC. Second, there are greater resources for train
sensing at stations, enabling tighter and more precise control of the train oper-
ations; for example, as the train enters the stations, a dense sequential array of
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OCC

Fig. 2. A sample graph with three KUTS stations and five trains on the line. The
nodes indicate the hosts involved in KUTS (with S being stations and T being trains),
and the edges indicate logical KUTS interactions.

trackside beacons (operating independently to CBTC) are deployed for better
alignment of the platform screen doors for passenger boarding.

As depicted in Figure 1, the path between OCC and the trains are comprised
of both wired connections (from the OCC to the network switches and then to
the stations and/or trackside equipment) and wireless connections (between the
stations/trackside and the trains); the trains physically move over long distances
and thus require wireless channels. Often acting as a communication relay be-
tween the OCC and the trains, the stations also incorporate control, e.g., control
booth to oversee the on-site operations.

Because the OCC primarily acts as the brain in CBTC-based train opera-
tions, it assumes the role of credential management in our work. Specifically, it
allocates the identities and the roots of trust to the trains and the stations. We
assume that the OCC is secure and that the initial roots of trust are established;
OCC failure is beyond the scope of our contribution.

3.2 Train Model

We build our model from the unique aspects of train system operations, i.e.,
the hierarchical structure (from the OCC to the stations to the trains) and the
mobile/static nature of trains/stations, respectively.
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Given trains i ∈ T and the established railway path with the stations
j ∈ S (with S being a vector set with the elements in a particular order),
we model the train system discussed in Section 3.1 and the host connectiv-
ity with a graph. Figure 2 shows a sample snapshot of the connectivity graph
with three KUTS stations and five trains on the line, i.e., S = {S1, S2, S3} and
T = {T1, T2, T3, T4, T5}. Only the hosts that are involved in KUTS - the OCC,
KUTS stations, and trains - are represented in the graph, and not all physical
train stations (where the passengers embark/debark the trains) need to be in-
volved in KUTS5. Henceforth, we define stations to mean KUTS stations, and
not the rest of the train stations irrelevant to KUTS. S nodes correspond to sta-
tions and T to trains, and the edges indicate the current connectivity. The lowest
row with trains are mobile, thus making the graph dynamic in time, while the
two upper rows are stationary. The indices correspond to time where the trains
travel from left to right. For example, T1 is the first train, T2 the second train,
and so on. Similarly, S1 is the first station that the trains encounter, S2 the sec-
ond, and so on. In the figure, for example, T1 passed S1 and S2 and is currently
either stationed at S3 or just passed S3 enroute to the next station. Our model
applies generally to the train-line topology, e.g., for a line that is a loop with 5
stations, the same physical station can be captured by incrementing j for every
train cycle (so that the physical station owns all the indices of j modulo 5 and
enables that the station’s keys be unique per train cycle) and can be straight-
forwardly adapted for multiple train-route cases (as long as there is a countably
finite sets of stations and trains and the OCC knows each of the train’s routes);
in fact, KUTS is largely described in each of the train’s view in Section 4, e.g.,
station j corresponds to the j-th station that a train encounters.

As described in Section 3.1, the OCC distributes keys to the stations and the
trains, and the trains use those keys to secure their communications to/from the
stations and the OCC. The stations’ key seeds are denoted kj while the trains’
key seeds are kij where j and i are, respectively, the station index and train
index as described previously; the presence of the subscript indicates whether it
is train’s key seed (subscript present) or station’s key seed (subscript absent).
The subscript for train key seeds corresponds to time and gets incremented
when the train passes KUTS stations, i.e., j in kij corresponds to the last station
that the train stopped. For example, for Figure 2, T1 currently passed S3 and
thus uses k13 to drive the key chain. As the initial root-of-trust, the OCC also
distributes ki0 to train i. KUTS provides a key update scheme given kj , ∀j ∈ S
and ki0, ∀i ∈ T . In other words, given a train i and its initial seed ki0, KUTS
computes kij (when passing the station j), which afterward is used to generate
the keys that are used for securing train communication protocols. Section 4
discusses KUTS in greater details.

5 The choice of KUTS stations is a design parameter which has a tradeoff between
security strength and complexity/computation and is beyond the scope of this paper.
Section 5 provides analyses and insights that can be helpful in making such design
choices.
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3.3 Threat Model

As in other key-establishment work, we consider attackers whose objectives are
to learn the key. In addition to the traditional threat model of attackers residing
outside of the train system, we consider any attackers but the OCC (the trusted
authority, as discussed in Section 3.1) and the corresponding train (who owns
the set of keys). The attackers do not have control over or did not compromise
the hosts depicted in Figure 2 (the logical entities that govern KUTS), but they
can physically reside within the train infrastructure system, e.g., the station-
trackside relay/switch or the parts of the station irrelevant to KUTS intelligence
are within the scope of our attacker model. Such attackers can also conduct ac-
tive attacks and disrupt the KUTS by diverging from the protocol, e.g., drop the
KUTS exchange or relay incorrect keys; we develop a detection countermeasure
for such active threats in Section 4.3. Such insider compromise (where attackers
breached parts of the system) is increasingly being considered in critical infras-
tructure security, such as in the car vehicular networking (multiple credential
authorities collaborating with each other for vehicular credential management
system) [24] and in device and chip manufacturing (split manufacturing) [25,
26].

4 KUTS scheme

We build our scheme on the model described in Section 3.2 and, using the jth
station’s key seed (kj) and train i’s initial key seed (ki0), describe KUTS which
updates the key for dynamic key establishment. The key updates are generated
on the train when it is at the KUTS stations (OCC, keeping track of the trains’
locations, also separately update the key using KUTS) and used while the train
is moving between the stations, which provides well-defined time-separation be-
tween the key updates and use. We use well-established cryptographic tools, e.g.,
one-way functions, for the key update in Section 4.2 and describe the key failure
detection in Section 4.3. But first, we define the contribution scope of KUTS in
Section 4.1.

4.1 KUTS Contribution Scope

Our contribution lies in establishing the keys between the OCC and trains for
CBTC, but not in how to use those keys to secure the communications. How
to use the keys for secure networking depends on the threat model and the
corresponding threat vectors, on which the security measure focuses, and such
developments are widely studied in computer security. For example, the keys can
generate digital signatures for communication integrity; the keys can be used
for message encryption for confidentiality; the keys can drive randomization
to thwart network reconnaissance or wireless denial-of-service attacks; and so
on. Our work thus serves as a building block to secure communication against
attackers in various scopes (whether they compromised the network and are
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H H H …ki0 ki1 ki2 ki3

k1 k2 k3 …

(a) KUTS key-chain update

H’

ki0

ki1

ki2

kij
…

H’({ki} t,0≤t≤j)

(b) KUTS key generation

Fig. 3. KUTS scheme for train i

physically residing within the train network, e.g., switch, or have access to the
wireless link between the train and the station). Our analyses for KUTS in
Section 5 also supports such generality in key use and attacker scope.

We focus on key updates given a key infrastructure with key seeds distributed
a priori, as discussed in Section 3.2. While key updates in other contexts, such as
those discussed in Section 2, are either time-dependent (periodic updates with
regular time intervals) or event-based (triggered by an event), KUTS update is
space-dependent (updates at the stations) and uses the train’s pre-established
route (defined by the railway tracks and publicly announced).

4.2 KUTS Update and Key Generation

OCC, as the trusted authority, knows all the keys. For any i ∈ T and j ∈ S, the
station j knows its own key seed kj and shares it to train i upon the arrival of
the expected train i. Train i takes its current key seed kij−1 and the station’s key

seed kj to update its key seed to kij . Only kj is communicated, and the other

keys (e.g., kij−1 and its history) are locally stored within the train and the OCC;
the computations are also performed locally. We design KUTS to provide such
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…

…

…

Fig. 4. Our KUTS instantiation

an update and, for scalability, keep the train’s key seeds kij , ∀j ∈ S the same
size.

KUTS uses two cryptographic one-way functions, H and H ′. H is used for
key seed update and to drive the one-way chain, while H ′ is used for generating
the key that will be actually used for CBTC. In other words,

H : (kij−1, k
j)→ kij (1)

H ′ : {kit}0≤t≤j → H ′({kit}0≤t≤j) (2)

As cryptographic one-way functions, both H and H ′ are easy to compute but
difficult to reverse, i.e., given H(x) for some x, it is difficult to find that x. Also,
as discussed in Section 5.1, KUTS is not sensitive to collision and is not subject
to many collision-based attacks on one-way computations.

Figure 3(a) describes KUTS’s key seed updates using H. For any i ∈ T and
j ∈ S, train i receives kj when it is stopped at station j (the upper row of
key seeds), then it uses H to compute kij from kj and kij−1 (the lower row of

key seeds). Afterward, as described in Figure 3(b), it uses {kit}0≤t≤j to compute
H ′({kit}0≤t≤j); the weight can be controlled for the input seeds of {kit}0≤t≤j ; for
example, our instantiation described in Figure 4 uses only kij and kij−1 at station

j. H ′({kit}0≤t≤j) is used as a key for secure CBTC operations, i.e., kji are not
designed to be directly used. Introducing additional complexity of H ′ protects
the security of the key chain, as discussed in Section 5.1.

We build an instantiation of KUTS, described in Figure 4, to analyze the
efficiency and the overhead in Section 6. In particular, we use SHA-256 hashes
for both H and H ′ with input size of 512 bits. We use SHA-256 because it is
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quick (as we will see in Section 6.1) and is computationally infeasible to reverse
the computation. Since we use a 512-bit-long inputs for H and H ′, the input for
H is a concatenation of kj and kij−1, and the input for H ′ is a concatenation of

kij−1 and kij .
Like KUTS, bit-coins use one-way hash chains driven by SHA-256. However,

KUTS is fundamentally different from bit-coin mining in the following three as-
pects. First, the upcoming bit-coin blocks are generated by solving the reverse
of Hash or finding collisions, while KUTS is given the inputs and compute the
Hash in the forward-direction to generate the key updates. Second, while the
bit-coin hash blocks, once solved, are publicly advertised, KUTS-output keys
are sensitive and are designed to be protected from adversaries. Third, a real-
istic adversary (even for a particularly persistent one) against train systems is
significantly less computationally capable than the combined effort of bit-coin
miners, as bit-coin miners are a global network of machines with some individ-
ual miners investing millions of dollars (even with such massive-scale distributed
network, each SHA-256-based bit-coin block gets solved roughly in every ten
minutes by design).

4.3 Detection of Key Failure

KUTS key update failure occurs when the OCC and the train do not agree on
the key, and the failure event can happen because of the fault on the train side
(e.g., receiving the station’s key seeds and computing the updates) or the fault
on the station side (e.g., transferring the station’s seeds to the trains). KUTS
detection uses the following aspects of the train communication infrastructure:
it is hierarchical with OCC communicating with the stations and the stations
communicating with the trains and vice versa, as described in Figure 2; it is also
dynamic with the trains moving from one station to another; and the trains’
operations (and their KUTS key uses) are orthogonal to each other.

KUTS detects key-update failures (e.g., an outdated/incorrect key is used)
when two or more distinct failure events are observed, where the distinctness
of failure events come from different connectivity edges (relayed from different
stations in the OCC view) or from the same edge but with different train/time
instances (where time instances are according to j updates in any of the train’s
view, e.g., any train on the station’s child branch leaves or enters). The dis-
tinctness is required because the key update relies on the cooperation with the
stations and needs to distinguish between the protocol failure on the station and
that on the train. This limits the failure event to one occurrence until another
distinct failure event is observed, which can trigger further investigation on the
node that has repeatedly caused failures. In the case of an update failure event
(and before the second event occurs), the train involved in the failure uses the
key before the failed update, and proceeds with the key for KUTS once it arrives
the next station; OCC keeps track of this to leave a record of key failures.

For example, in Figure 2, suppose the OCC senses a KUTS failure event
when the communication got relayed from S2 and originated from T4. However,
since it does not know whether the failure is from S2 or T4, it waits until T4
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moves to S3 or until T5 enters S2. If T4 is misbehaving, then a failure event
will occur on S3 or any other future stations that T4 will encounter; if S2 is the
one misbehaving, then another failure event will occur for T5 or any of the later
trains. After the first observation of the failure (with k42), T4 and the OCC use
the key that they agreed on before T4 arrived at S2 (k41) before arriving to S3
and, upon arriving in S3, updates the new key with H(k41, k

3).

5 Security Analyses

We analyze the KUTS scheme in this section. While Section 5.1 derives security
properties from the KUTS design, Section 5.2 theoretically analyzes the security
strength.

5.1 Security Properties

KUTS is designed carefully to have the following properties that will be useful
in securing the train communications. In addition to being scalable (because the
key sizes remain the same for all updates) and enabling detection of misbehaving
insider station or train (as described in Section 4.3), it is interwound with the
established physical operations of the trains, insensitive to key collisions (de-
fending some known attacks on hash algorithms), and robust to compromise.
We discuss about these properties in greater details in this section.

Established and Publicly Known Trajectory of Train Operations
KUTS uses the established operational trajectory/path of the trains as a source
of security assurance. Because the path is clearly defined by the railway tracks
and many users involved in the operation (the train-borne customers, the train-
borne logic, the stations, the OCC, and so on) a priori agreed on the path,
it is difficult to change the train’s operational path during CBTC (i.e., when
KUTS keys are used). For example, in contrast to the path authentication work
in packet routing and supply chains discussed in Section 2, it is challenging to
make the train physically diverge from the railway tracks, re-route it without any
of the entities noticing, or stop it in between stations and engage the train with
KUTS; not only do the trains themselves also keep track of their own locations
relative to the stations, e.g., by using odometry and/or beacons, but there are
also additional redundant mechanisms to check whether the train is at a station,
e.g., more capable and densely populated sensors enable higher precisions on
train sensing and better alignment with the platform screen doors.

Two-Layer Approach for Collision Irrelevance
KUTS introducing two distinct hash computations (H using the key seeds and
H ′ using the outputs of H) provides the following security properties. First,
collision-based attacks on KUTS-output keys do not breach the security of the
KUTS key chain because of the separation of the two hashes, as finding a collision
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of one hash does not also yield a collision in the other hash. As it is generally
easier to find a collision than the exact hash input, this property makes KUTS
more secure and thwarts many collision-based threats that has been studied to
break hash algorithms. Thus, for many one-way functions, e.g., SHA-256 hash
that we used in our instantiation implementation, the state-of-the-art attackers
are forced to resort to brute-force. Second, it enables the additional protection
of key seeds, as the key seeds are separate from H ′ and are not directly used
to generate the keys that are actually being used for train communications. We
investigate this further in Section 5.2.

Two-Seed Approach for Compromise Resilience
In addition to separating the key chain from the CBTC-driving keys, the train’s
key seed and the station’s key seed are independent and originate from separate
entities. Therefore, even if either of them gets compromised (which by itself is
a difficult task, as the train key seed is stored and computed inside the train
vehicle with no need for networking, and there is a mature set of digital cryptog-
raphy techniques that can be used to ensure confidentiality of the train-station
exchange for the station’s seed, e.g., using the current before-update key), the
entropy for the other key seed still holds against the attacker. Section 5.2 inves-
tigates this property further against varying attacker capabilities.

5.2 Security Strength Analyses

We analyze the security strength of KUTS, against an attacker whose goal is to
learn the key as described in Section 3.3, and use the metric of entropy which
quantifies how random the value is against an unauthorized attacker [27, 28] to
abstract away from the key length and other implementation details (and the
corresponding information leakage). The entropy of a discrete random value α,
whose sample size is S, is H(α), and H(α) = −

∑
i∈S Pri log(Pri) where Pri is

the probability of i occurring; if the logarithm is base-2, then H(α) is in bits. The
entropy H becomes additive across independent random values. For example, if
α is a sequence of independent uniformly-distributed bits (standard practice for
digital keys) that are n bits long, then Pr[α = γ] = 1

2H(α) = 1
2n , ∀γ ∈ S, and it

takes the attacker 2H(α)−1 = 2n−1 trials to guess the correct α in expectation.

Definition 1. Given any function f , yf is the entropy of the output of f , and
xf is the entropy of the input of f . In other words, if β = f(α), yf = H(β) and
xf = H(α).

In our instantiation, xf > yf for both f = H and f = H ′, because both
H and H ′ compress information (lossy) and have longer inputs than outputs.
We initially assume that the keys, both kij and kj , ∀j ∈ S, ∀i ∈ T , are secure.
However, we take a step-by-step approach to introduce stronger threat scenarios
(under our threat model in Section 3.3) to break the assumption and show
that KUTS still remains secure and the key random; the rest of the section is
organized in the increasing order of attacker capability/difficulty. Through this
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analysis, we highlight the effectiveness of the separation and provide insights
helpful for choosing the parameters for KUTS, such as the key seed length.

General Security Strength of KUTS
For static keys, the attacker only needs to breach the key that is being used for
the train networking, and the entropy is yH′ .

In contrast, KUTS dynamically updates the keys. Because it separates the
key chain and the key used for CBTC, as described in Section 5.1, and the
computations are done locally within the KUTS machines, the attacker needs
to jointly attack H and H ′ (as H is beyond H ′), and the cost of doing so is xH .
For example, against our implementation instantiation described in Figure 4,
xH = H(kij−1, k

j) = H(kij−1) +H(kj) where the last equality comes from kij−1
and kj being independent to each other. KUTS key chain remains secure if
xH is positive, because the exact input is required and KUTS is irrelevant to
hash collisions; in fact, the following paragraphs study when parts of KUTS is
compromised, starting from when H ′ is breached and yH′ = 0.

Outsider Attacker Breaching H ′

Depending on the use of the KUTS-driven CBTC keys (H ′) and the computa-
tional capability of an attacker, the attacker can learn H ′. Suppose this happens
and yH′ = 0. If static keys were used, the key is compromised, and the attacker
has access to the CBTC communications.

On the other hand, against KUTS dynamic keys, the attack is mitigated and
its breach impact is limited to the following key update, as the rest of the KUTS
is still secure, e.g., xH′ = H(kij , k

j) > 0 for our instantiation, because H ′ is
a one-way function and is not injective, i.e., many-to-one mapping. Section 4.3
also provides a fall-back mechanism against temporarily compromised keys.

Infrastructure Compromise and Breaching kj

An insider attacker who compromised the train infrastructure can learn kj , for
example, by attacking the key exchange between the station-side KUTS machine
and the train. In cases where a capable insider attacker breaches the key kj , i.e.,
H(kj) = 0, KUTS still remains secure because of the randomness in kij−1 and

xH = H(kij−1) > 0.

Train Compromise and Breaching ki
j−1

It is difficult to compromise kij−1 because this key does not leave the train’s
KUTS engine, which also performs the local computations for KUTS updates.
Nevertheless, even if kij−1 is compromised and H(kij−1) = 0, xH = H(kj) > 0

and the security strength depends on kj .
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(a) Computation overhead in clock cycles

(b) Computation overhead in time

Fig. 5. KUTS hash computation overhead
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6 Implementation Analyses

To estimate the computational overhead, we implement KUTS on three ma-
chines: i7 (Intel i7 64-bit processor at 2.5GHz, 16GB RAM, Mac OS), i5 (Intel
i5 64-bit processor at 1.6GHz, 16GB RAM, Linux OS), and AVR (Atmel AVR 8-
bit microcontroller at 8MHz, 4KB RAM). i7 and i5 machines are widely used for
general-purpose computers, and AVR microcontrollers are playing greater roles
in modern computing as more devices and applications, especially those con-
strained in resource, require logic and connectivity to realize Internet of Things
(IoT); even with the processing-limited AVR and no effort to optimize, KUTS
overhead is marginal as discussed in Section 6.2. SHA-256-based hash algorithms
(for KUTS H and H ′) are adapted from OpenSSL, which provides a commercial-
grade open-source library, widely adopted on modern-day Internet and other
digital transactions.

6.1 Computational Overhead from Hashing

Figure 5(a) and Figure 5(b) show the average processing overhead of comput-
ing a hash, respectively, in clock cycles and in seconds while varying the hash
input size. Both i7 and i5 use 64-bit processors and have comparable processing
overhead in clock cycles (e.g., i5 is slightly more efficient, requiring 3-10% less
number of clock cycles to compute a hash depending on the input size), and
the primary difference between i7 and i5 in seconds is derived from the clock
frequency. On the other hand, the AVR significantly requires greater overhead
in both clock cycles and seconds; it requires 118-150 times more clock cycles
than i5, depending on the hash input size, and 114-139 times greater than i7.
The difference becomes even greater in seconds due to the processing frequency
difference; AVR at least takes 3.578 × 104 times longer than i7, and the differ-
ence in computational time becomes greater than four orders of magnitude. We
leverage these measurements to estimate the cost of KUTS in Section 6.2.

6.2 KUTS Cost Analysis Between Train and Attacker

As described in Section 4.2, to implement KUTS, we use SHA-256 for both H
and H ′, and the input for H is a concatenation of kj and kij−1 while the input

for H ′ is a concatenation of kij−1 and kij . Thus, we focus on 512-bit or 64-Byte
inputs. For KUTS, the overhead is dominated by the two hash computations of
H and H ′ (the overhead from memory-based processing, i.e., read/write of the
bit registry, is relatively minor). For a legitimate train, the computation takes
2 × 326.9 = 653.8 nanoseconds for i7, 2 × 482.4 = 964.8 nanoseconds for i5,
and 2 × 12.57 = 25.14 milliseconds for AVR. Even if the train system requires
the security measure to be entirely modular to the rest of the system and uses
the AVR microcontroller, the KUTS processing time overhead (of less than 3%
of a second) is dominated by the time spent at the trains with customer and
physical-operation-related delays (which are in the order of seconds) and is thus
acceptable for deployment.
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On the other hand, the attacker cannot access the hash chain and, not having
the inputs of the hash, need to resort to brute-force, as described in Section 5.1.
For example, in our implementation using the most capable i7, the attacker cost
to break KUTS is 2 × 2512−1 × 326.9 nanoseconds = 1.409 × 10140 years in
expectation. In contrast, depending on the design of the train operations, our
key updates can occur in the order of minutes (for urban metros) or hours (for
rural inter-city trains). Our result corroborates with the general belief that SHA
is secure enough (KUTS is also insensitive to collisions) and is thus widely used
for security-sensitive digital transactions such as finance and crypto-currency (as
discussed in Section 4.2); it will take a computing power as big as the globally
distributed network of bit-coin miners to compete with the KUTS updates.

7 Conclusion

To achieve secure key establishment for train-to-infrastructure networking, we
develop a key update scheme KUTS that mitigates the key breach by limiting
the breach impact to the current key and builds resiliency against system com-
promise. KUTS design is tightly interwound with the inherent train applications
(the hierarchical architecture for the vehicle-to-infrastructure CBTC communi-
cations and the differences in physical operations at and between stations, which
lead to the logical separation of KUTS key update and use). We also provide
a temporary fall-back mechanism and a detection scheme, which can be used
to trigger a failure-response mechanism. We build KUTS based on the state-of-
the-art pseudo-random generator function (SHA-256 in our instantiation) and
analyze its security strength and properties while keeping the security overhead
marginal (a small fraction of a second per KUTS operation).
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