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Abstract— User data on mobile devices are always transferred 
into Cloud for flexible and location-independent access to 
services and resources.  The issues of data security and privacy 
data have been often reverted to contractual partners and 
trusted third parties. As a matter of fact, to project data, data 
encryption and user authentication are fundamental 
requirements between the mobile devices and the Cloud before 
a data transfer. However, due to limited resources of the 
smartphones and the unawareness of security from users, data 
encryption has been the last priority in mobile devices, and the 
authentication between two entities always depends on a 
trusted third party. In this paper, we propose a lightweight 
encryption algorithm and a security handshaking protocol for 
use specifically between in mobile devices and in Cloud, with 
the intent of securing data on the user side before it is migrated 
to cloud storages. The proposed cryptographic scheme and 
security protocol make use of unique device specific identifiers 
and user supplied credentials. It aims to achieve a users-
oriented approach for Smartphone Cloud. Through 
experiments, we demonstrated that the proposed 
cryptographic scheme requires less power consumption on 
mobile devices. 

Keywords; Security, Mobile devices and smartphones, 
Android, Cryptography, Cloud 

I.  INTRODUCTION  
Over the past decade, mobile devices such as smart 

phones and tablets have caused a paradigm shift into nearly 
every field of the computing industry, including wireless 
networking, web-based business models, and the methods 
by which data are transmitted between clients, servers, or 
other clients. Furthermore, this shift has meant services and 
data becoming more readily available to mobile device 
users; consumers no longer require access to traditional, 
more stationary computers to be able to access web-based 
services, communicate, or access personal or shared data. 

Recently, customer data on a device is automatically 
backed up to clouds as clouding environment has been 
popularly deployed like iCloud, Azure, EC2, and so on. To 
protect the customer data, data encryption is an unavoidable 
solution. However, mobile devices have a pain to process 
the data encryption due to limited power and resources even 
though many data encryption algorithms have been 

proposed for several decades. Usually, encryption has been 
diminished in order to improve processing speed [6, 11, 12]. 

Since version 4.0, Android has included the ability for 
whole disk encryption [4], many mobile solutions exist for 
users to encrypt data and individual file locally, or to 
encrypt data to by stored in the cloud. However, these tend 
to use methods originally designed for systems where 
resources such as battery life and memory footprint are less 
constrained than mobile devices. For large exchanges of 
data between mobile devices and remote storage servers, the 
additional overhead incurred by encryption and decryption 
can accumulate to be detrimental to the resources of mobile 
devices. To mitigate the threat of data theft, it is evident that 
a reliable encryption scheme is needed to protect data – both 
physically and while in transit to cloud services – while 
taking into account the resource constraints of battery-
powered mobile devices. 

In this paper, a lightweight encryption scheme is 
proposed on a block cipher. It consists of substitutions, 
permutations, and rotations. The key is securely generated 
by a user credential and unique device information. The 
proposed method aims to minimize the amount of 
processing time and power consumption, comparing to 
existing mobile encryption applications. Furthermore, a 
remote secure authentication protocol is proposed without a 
third party authority. The security protocol utilizes a user 
password and device information to authenticate the user 
and the cloud service provider. Each party can generate the 
common secret key based on its own information. The 
proposed security protocol contributes to the minimum 
communication overhead since they just need to exchange 
random numbers. The proposed methods aim to achieve 
user-centric encryption and authentication instead of 
depending on a third party.  

This paper introduces a new scheme to encrypt data on 
the device side that uses the native APIs of the Android 
framework. Implemented specifically for use on the 
Android mobile platform, the scheme is designed to use the 
functionality and APIs provided by the Android framework 
itself to provide encryption with the goal that by catering 
specifically to a mobile-based platform, resources use is 
more tailored for mobile devices and able to reduce the 
overhead caused by traditional encryption schemes. This 
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reduced resource use, in turn, will be more suited to allow 
Android devices to exchange and encrypt/decrypt larger 
volumes of data with cloud-storage servers. Furthermore, 
our scheme uses principles of secure encryption, such as 
non-linearity, cipher block chaining, and byte scrambling, to 
protect confidentiality of data. 

This paper contributes to the development of the new 
lightweight encryption algorithm and the new security 
protocol for mutual authentications for mobile cloud 
computing. We develop a usable encryption application for 
Android phones and evaluate it on a real smartphone device. 
Through experiments, the proposed method demonstrates 
the feasibility of user-centric encryption and authentication 
scheme for mobile cloud computing.  

In section II of this paper, we outline a proposed method 
for the design of this encryption scheme, describing the 
algorithm, scheme, and implementation of the encryption 
program itself as an Android application. Section III 
compares the proposed method with other methods currently 
in use in the industry. The experimental design to measure 
the performance of the proposed scheme is described in 
section IV, detailing the setup and measurements taken to 
determine how the proposed method performs. Section V 
examines the results of section IV, namely by examining the 
implications of these results and how they compare to other 
available encryption schemes. Finally, section VI concludes 
the paper with an overview of the previous sections. 

 

II. THE PROPOSED METHOD 
A new encryption algorithm and secure handshaking 

protocol are proposed to protect data on mobile phones based 
on a user password and a unique device identifier. It is based 
on a user-centric method instead of depending Cloud Service 
Providers (CSP). It aims to encrypt personal data on the 
limited resource environment before a data transfer into 
Cloud. When users need to access their data, authentication 
is performed between the smartphones and the CSP based on 
the device information. The following sections will be given 
a description of the proposed methods in detail. 

A. A Lightweight Encryption Algorithm 
Encryption consists of an initial XOR operation, 

followed by several steps of matrix transformations to 
shuffle the data; decryption is simply reverse of the 
encryption procedure, using inverted lookup tables for the 
substitution and column permutation steps. Each block of 
data undergoes seven rounds of encryption (or decryption), 
and the scheme uses CBC mode to minimize the chance of 
two blocks of plaintext producing identical blocks of 
ciphertext. 

Fig. 1 gives the overall architecture of the round-based 
encryption scheme. It is designed as a block cipher using 
144-bit keys that operates on 128-bit blocks at a time. The 
encryption procedure is repeated for a total of seven rounds, 
using a unique 144-bit key for each round. Fig. 2 provides a 
precise algorithm converts each plaintext block to a cipher 

text block.  Based on Fig. 2, each components are described 
in detail.  

 
 

 

Figure 1. The round-based encryption scheme used to encrypt each block 
of data, consisting of seven rounds, with each round using a unique round 
and permutation key, to produce an encrypted ciphertext block. 

The architecture uses seven repeated rounds, each with its 
own independent key, to ensure thorough obfuscation of the 
orginal data while still remaining lightweight. So while each 
block is being encrypted by running it through several 
rounds of the encryption algorithm, the architecture uses as 
few rounds as possible to limit consuming too much 
processing power. 

The key is derived from a user-supplied password and 
device ID, using a unique hardware identification with 
something only the authorized knows to generate the 1008-
bit key. By using two sources of input to derive the key, this 
helps to limit that opportunity to obtain full credentials to 
decrypt the data. 

 
1) Key Derivation: The derived key is, consequently, 

based on something the user knows (e.g. a password) and 
something the user has (i.e. a unique device identifier), 
making decryption of the encrypted data possible only by 
the user who knows the password and on the device on 
which it was originally encrypted. Only authorized user can 
generate a right key based on the two factors that can be 
selected from various data, such as user biometric 
information, device unique numbers (e.g. IMEI, MEID, 
ESN, IMSI based on Android) [14]. We use PBKDF2  
(Password-based Key Derivation Function) [15] as shown in 
Fig. 1 and it generates a 1008-bit key from a user password 
and IMEI(device ID) that we choose. 

The derived key is used as round, XOR, and permutation 
keys after breakup. In other words, the 1008-bit key is 
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broken into seven 144-bit round keys, each of which is 
further broken down into two parts: a 128-bit XOR key and 
a 16-bit permutation key that determines the permutations of 
the block in later steps of the algorithm. 

 
2) Cipher Block Chaining(CBC): Before being fed to 

the into the actual encryption algorithm, the scheme uses 
CBC mode to change the bytes of the plaintext data; that is, 
each block of plaintext is XORed with the previous block of 
ciphertext. The result of the XOR then becomes the input 
for the encryption function. In the case of the first block, 
where no previous block exists, the salt used to seed the 
password is also used for a random IV to XOR with the first 
block of data. Each 128-bit plaintext block is XORed with 
the 128-bit round key to produce a new block consisting of 
ciphertext. 

 
3) Substitution: Using Rijndael substitution blocks [16], 

each byte in the XORed block is substituted for a new byte 
using a basic lookup table. This further reduces the linearity 
of the algorithms, making it less susceptible to differential 
and linear cryptanalysis. The substitution is performed by a 
one-dimensional array constructed from the Rijndael S-boxe 
in [16]. After substitution, the newly substituted bytes in the 
ciphertext block are, from this point forward, treated as a 4 x 
4 matrix. The matrix after configuring blocks is processed 
by the step of column permutation. 

 
 

 00 01 10 11 
00xx 1243 2341 3412 1342 
01xx 4231 2314 4312 3421 
10xx 4132 4123 1234 2413 
11xx 3124 1423 3241 2134 

 

Table 1. Column permutation done using 4 bits from the permutation key, 
with each cell showing the re-ordering of the original column order. 

 
4) Column permutation: The column permutation is 

performed two times before and after Row Rotation as 
shown in Figure 2. In the first column permutation, the first 
four bits of the 16 bit permutation key determine how the 
columns of the 4 x 4 matrix are permuted using a lookup 
table provided in the code of the application in Table 1. 
Given an input block, a 4-bit column permutation index, and 
a one-dimensional array constructed from Table 1. In the 
second column permutation, the procedure permutes the 
columns once more to shuffle the ciphertext bytes using the 
last four bits of the permutation key. 

 
5) Row rotation: The next 8-bit are split amongst the 4 

rows, 2 per row, and determine the amount by which the 
row gets rotated to the left. For example, a bit series of 10 
would rotate the row two to the left, while a 00 bit series 
would cause the row to remain the same. Since the four 2-
bit rotation number sit over the border of two bytes, we use 
individual bit manipulation to extract these numbers and 
apply them to their corresponding row. 

6) Padding: In the case that the final block of the data to 
be encrypted is not a full of 16 bytes, additional bytes are   
added to make the same block size. Block padding is 
handled when each block is being read from the file to be 
encrypted. If the method reaches the end of file marker, it 
checks the number of bytes read into the current block and, 
if this number is less than sixteen bytes, it pads the block 
with the appropriate bytes and continues to encrypt the 
block as usual. For example, if the final block is only 10 
bytes long, six copies of the byte 0x06 are appended to the 
block to create sixteen bytes. During decryption, removal of 
these bytes is done by simply examining the last byte of the 
last block, and removing that many bytes. 

The encryption procedure is repeated for a total of seven 
rounds, using a unique 144-bit keys for each round. The 
proposed cryptography system is designed by a typical 
block cipher based on substitutions and permutations. The 
key is generated by a user password and a unique device 
identification.  

 

 
Figure 2. A diagram of the encryption algorithm being implemented, 
showing the steps and function carried out on each 128-bit data block. 
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B. Decryption Algorithm 
Decryption algorithm is described according to the 

encryption scheme in reverse order. First, we generate the 
same key based on the PBKDF2 function with the same user 
password and the device’s IMEI in order to decrypt the 
encrypted data. [SYC: Referring back to the Key Derivation 
Section to remind the readers how the receiver (whether it is 
the transmitter itself or not) is capable of key generation and 
decryption will be helpful.] Second, now the decryption 
process is similar to the encryption method as follows. 

 
1) Permute the columns using the last four bits of the 

permutation key to look up the specific permutation. 
2) Use permutation key bits 4 through 11 to rotate the rows 

to the right, similar to the fashion described in step 7 of 
encryption. 

3) Permute the columns again using the first four bits of the 
permutation key. 

4) Substitute each byte of the block using the inverse 
Rijndael S-box. 

5) XOR the bytes with the round key. 
6)  Repeat steps 1 through 5 for seven rounds to generate the 

original plaintext of the data. 
7) Finally, the decryption algorithm undoes the XOR 

operation from CBC mode by outputting the XOR of the 
previous ciphertext with the output of steps 1 – 6 to 
reproduce the initial plaintext. 

 
 00 01 10 11 

00xx 1243 4123 3412 1423 
01xx 4231 3124 3421 4312 
10xx 2431 2341 1234 3142 
11xx 2314 1342 4213 2134 

 

Figure 3. Inverse column permutations used during decryption 
 

Both the column permutations and the Rijndael S-boxes 
from the encryption method are inverted revert the data back 
to its original positions. Figure 3 gives the inverted column 
permutations and the reverse Rijndael S-box is also used 
during the substitution step of decryption, respectively. 
After a successful decryption, the method removes the 
padding bytes from the end of the decrypted file. The result 
is a decrypted copy of the encrypted file. 

 

C. User Authetication 
This paper proposes a remote secure user authentication 

protocol in order to allow users to access their data without 
disclosing any secret information over communications 
between users and the cloud service provider (CSP). Section 
II.A briefly mentioned the scenario of implementing the 
proposed encryption on a mobile cloud service provider, 
allowing for more universal access of the data. However, 
this means that at some point, devices using the mobile 
cloud would need to exchange the IMEI, provided password 
in order for the provider to be able to authenticate users.  
This could, of course, be accomplished at the initial stage 

wherein a user is registering her device with the mobile 
cloud provider and, using an agreed upon the use of cloud 
service. 

Fig. 3 shows a user authentication protocol based on a 
user password, a device identification number, and random 
numbers. As shown in Fig. 3, the authorized users and CSP 
can compute a shared secret key K, where K is gb(a+uW) mod 
p. Note that p is a large prime number known to both 
entities, g is a generator in the finite field Fp, and a and b is 
a random number only known to each entity. The CSP 
stores gW mod p, where W is a function of the user 
password, instead of saving the user password. The user can 
also calculate W from his or her own password. Both of 
them can also generate u, where u is a 32-bit number 
derived from the user device identification number (e.g. 
IMEI, MEID, ESN, IMSI based on Android). 

Based on the initial settings, the CSP can compute 
gb(a+uW) mod p since it knows b, W, u. The mobile user can 
also compute the same key K because he knows a, W, u. 
Based on the generated shared key, the last two steps can 
finish to authenticate each other with a nonce each time, as 
described in Fig. 3. During the communications, any secret 
information is never exchanged. Even though attackers 
intercept any conversations, they cannot generate the 
temporary session keys or user passwords. The nonce, C1 
and C2 can be changed with a timestamp to avoid replay 
attacks in the future.  

The benefit of the proposed protocol does not rely on a 
third-party authority (i.e. Certificate Authority, CA) to 
negotiate a connection between the device and mobile 
cloud. The third-party authority causes a lot of challenging 
issues: a deployment, a single-point failure, a certificate 
management, revocation, and so on [30]. However, the 
proposed authentication protocol is performed between two 
parties without a third-part authority. It is based on two 
factors by using a password and unique device information 
for mutual authentication.   

 

Smartphone Users Cloud Service Providers 

Alice, ga mod p 

CSP, gb mod p,  C1 

K{C1-1}, C2 

K{C2-1} 

(A user(Alice) knows W, 
 u derived from devide_ID ) 

(CSP stores “Alice, gW mod P,  
u from the user device_ID) 

Note that K = gb(a+uW) mod p  
Figure 3. A secure remote password protocol for user authentication. The 
CSP has gW mod p, where W is a function of the user password. The user 
can calculate W from his or her own password. 
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III. EVALUATION 

A. Implmentation and Experiment in Software 
To evaluate the proposed method, it was implemented 

on Java platform SE 7 with the Android SDK to create an 
application. In addition, to generate a key, we used 
Password-based Key Derivation Function 2 (PBKDF2) from 
a user password concatenated with the device IMEI as the 
seed. It is a standard cryptographic function that takes a 
seed, salt, generated key size, iteration count, and hashing 
algorithm to produce the encryption keys. For our method, 
the algorithm generates a key with size 1008 bits (i.e., 144 
bits times seven rounds). The salt and iteration count are 
used to slow any offline attacks on a password-based key 
derivation function, such as dictionary and brute force 
attacks. The salt constitutes the header of the encrypted file 
so it can be easily retrieved during decryption, which is then 
followed by the body of encrypted bytes.  

To compare the performance of the proposed method 
with other available methods, two popular encryption 
applications: Cryptonite and DroidCrypt. We used our 
device to evaluate performance overhead for the proposed 
method. We used Nexus 7 with Android 4.4.2, 1GB RAM, 
Non-removable Li-Ion 4325 mAh battery (16 Wh). 
Qualcomm Trepn Profiler1 is used to experiment power 
consumption and CPU frequency for different available 
encryption applications for Android. Trepn Profiler is a 
diagnostic tool to profile the performance and power 
consumption of Android applications running on devices. 

Table 1 shows the summary of each application for our 
evaluation. We selected two different applications. The two 
applications are based on Advanced Encryption Standard 
(AES), one of block ciphers. To compare our proposed 
algorithm, we use the same key size and block size as 
shown in Table 1.  However, the applications also support 
different algorithms like Blowfish, RC6.  

 
Table 1. Cryptographic applications for Android devices.  

 Algorithms Key Size Block Size  
Crytonite AES 128 128 

DroidCrypt AES 128 128 
Our Approach - 144 128 

 
 
Fig. 4 demonstrated our application keep maintaining 

the smallest power when we encrypted 100KB file. The 
current power usage indicated the total power consumptions 
after starting each application on the device. The average 
power usage indicated the power consumption on average 
after the Trepn Profiler started. The CPU frequency was 
1.026 MHz for our approach. The other application showed 
1.512MHz CPU frequency to encrypt 100KB file.  

 
 

(a) Cryptonite (b) DroidCrypt (c) Our Approach  
 

Figure 4.  Evaluation for power consumption for Android applications. 
 

 

B. Implmentation and Experiment in Hardware 
In order to examine the performance of the algorithm 

and regards to processing resources consumed and speed, 
the proposed algorithm was also simulated at the hardware 
level using Verilog HDL. The PBKDF was ignored for the 
hardware implementation to focus on the performance of the 
algorithm itself, so the simulation supplied a hard-coded key 
to the algorithm without any generation. 

To judge performance, we examined the execution time 
of the proposed algorithm and compared it to the execution 
of the Data Encryption Standard (DES), similar to AES in a 
block cipher. Setup times of signals between registers were 
examined, and the longest signal setup time for each 
algorithm was deemed to be the limiting factor of the clock-
cyle time; similar to how a manufacturing assembly line can 
only output a product as fast as the slowest stage in line. 
The limiting cycle-time was multiplied by the total number 
of cycles necessary to encrypt one 16-byte block of data to 
give the total execution time per block of data; that is: 

 
texecution = tslowest instr. X cycles/block 

 
Timing analysis of the hardware modules, the basis for 

estimating the cycle-time per instruction, after placement 
and routing of the HDL code. This analysis may be in slight 
disagreement with actual results were the algorithms 
implemented on actual hardware, but the estimation was 
deemed suitable to compare two algorithms. 

Hardware testing in Verilog gave very promising results, 
though problems with some module implementation would 
not allow for a thorough analysis of all signals due to 
limitations of the simulation software. 

The DES was given as 12.930 ns inside the module that 
handled the initial permutation of data encryption. 
Furthermore, the total number of cycles necessary to encrypt 
one block of data was found to be a total instruction count 

1QUALCOMM Trepn Profiler at https://developer.qualcomm.com/mobile-
development/increase-app-performance/trepn-profiler. 
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of 81 instructions, giving a total execution time per block 
encryption of about 1.050 μs. 

For our proposed algorithm, obtaining signal setup times 
proved to be slightly more challenging, as some of the 
modules could not be full simulated as hardware by the 
simulation software. Nonetheless, we obtained a maximum 
cycle time of 7.482 ns and a total instruction count of 21 
instructions. This execution time of our result when 
implemented in hardware turned out to be a significant 
improvement over DES, giving a total of 0.160 μs execution 
time per block of encrypted data. 

IV. DISCUSSION 
Our motivation in the design of our encryption scheme 

was to build a lightweight and low-power method that could 
be implemented on mobile devices, with a particular focus 
on securing data to be stored in the cloud. On the cloud – 
and even during transmission from device to cloud – the 
data exists outside of the user’s immediate control, and how 
effectively it is secured is dependent on the storage 
provider’s security. This security could potentially have 
many risks that a user may deem unacceptable to host 
unencrypted data: a security breach by cyber criminals, a 
malicious or simply careless administrator, or even user 
error when dealing with a new or unfamiliar system. 

The encryption scheme is intended to encrypt data on the 
user’s device before it is transmitted and stored in cloud 
storage. Moreover, since it is being run on a mobile device 
where power consumption and memory usage are much 
more constrained than on traditional computers, we 
designed the algorithm with the goal of having a reduced 
overall CPU usage and memory footprint versus other 
encryption methods. 

Of course, encrypting only a few kilobytes or even 
megabytes of data at a time on a mobile device will show 
little impact on the amount of power and memory being 
consumed. However, as device users are migrating their 
data from local to cloud storage, sending and receiving data 
that must encrypted and decrypted, ever-growing exchanges 
of data will put larger and larger demands on resource use. 
A high enough volume of data exchange that needs 
encryption and decryption to ensure its confidentiality can 
accumulate to become a significant enough drain on limited 
system resources. 

With this in mind, our algorithm was designed to be 
simple and efficient. We constructed the algorithm to be 
easily implemented on the Android system, using a simple 
XOR operation followed by several rounds of key-based 
matrix transformations as the backbone of the scheme. With 
our base encryption algorithm, we added further 
modifications and steps to it in order to ensure such security 
and cryptographic principles as non-linearity, by using byte 
substitution, and semantic security, using multiple rounds of 
encryption and running the entire scheme in CBC mode, 
were included in our encryption scheme. 

The method operates at the byte level of data, so it is 
able to encrypt any file regardless of type or size. 
Encryption of the file does not cause any significant 
expansion in file size, only an additional 32 bytes for the 
prepended salt and “encrypted” string, plus a maximum of 
16 bytes resulting from padding the final block. For the 
average file likely to be encrypted, these additional bytes are 
negligible. 

We believe our algorithm is a step in building a bridge 
between increased demands, both personal and business, for 
mobile security, while at the same time being able to make 
safe, effective use of cloud-storage systems without having 
a detrimental impact to resources and performance on 
mobile systems.  

 

V. RELEATED WORK 
Rapid mobile device proliferation and the maturing of 

cloud computing technologies introduces new challenges 
and opportunities in the field of data security and privacy, as 
work continues to boost mobile device storage and 
processing resources offered by cloud computing. Security 
architectures and encryption schemes for mobile cloud 
computing have been proposed by others working to find an 
effective way to secure data stored on an external, remote 
site while at the same time limiting the amount of resources, 
such as memory footprint and CPU usage, such security 
measures would incur.  

 
A. Symmetric and Asymmetric Encryption  

There exists much debate over whether using symmetric 
or asymmetric encryption schemes are best for data 
encryption. Symmetric encryption allows for faster 
encryption of data at a relatively low resource cost; 
asymmetric, on the other\hand, is much slower and requires 
more resources to attain the same level of security as 
symmetric, but does not have the problems often associated 
with key management as symmetric encryption. 

Subasree and Sakthivel introduce in [17] a protocol 
using ECC to encrypt data, as well as Dual RSA to encrypt 
the message hash used to ensure integrity. Since this 
protocol relies on ECC and RSA, both of which are 
asymmetric encryption schemes, it is significantly slower 
than symmetric encryption. 

Alternatively, hybrid schemes that include both 
symmetric and asymmetric elements have been proposed in 
[18], [19], and [20]. Kader et al not only evaluate several of 
these proposed protocols, including those mentioned in [19] 
and [20], but also propose their own New Hybrid 
Encryption Protocol (NHEP). In this protocol, block of data 
are divided in half, encrypting the first half using AES 
(symmetric) with ECC (asymmetric), and the second half 
using Blowfish (symmetric) with RSA (asymmetric). For 
both halves, the respective asymmetric encryptions are used 
to encrypt the secret key, which is used by the symmetric 
algorithms to encrypt the data. Experimental testing of 
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NHEP showed a significant edge over other hybrid 
encryption algorithms. 

Often in symmetric encryption, a difficulty with secret 
management comes from the recommendations on key 
lifetimes and updates, after which a key can no longer be 
considered secure and data encrypted under this key must be 
re-encrypted using a new key. The work of Watanabe and 
Yoshino in [21] present a way to mitigate the risk of “key 
leakage” during the periodic key update. In their proposed 
scheme, the authors use symmetric encryption with an all-
or-nothing transform add an increased level of security to 
encrypted data. In this scheme, the all-or-nothing transform 
ensures that even if part of the secret key and ciphertext is 
leaked, without the whole key and ciphertext, any obtained 
information from this leakage reveals nothing about the 
plaintext and is, effectively, garbage data. 

 
B. Full Disk Encryption 

One option for protecting data on mobile devices is to 
use a full disk encryption solution, wherein the Android 
operating system initially encrypts existing data on an entire 
storage volume, as well as all bytes written to it thereafter. 
On devices running the Android operating system, full disk 
encryption has been available since version 3.0 (aka, 
Honeycomb). Disk encryption on Android is handled 
throughout API calls to the kernel’s crypto library; however, 
at the application level, the process is a fairly intuitive series 
of steps that guides the user through the encryption process. 
While it can take up to an hour to encrypt a device, the ease 
of use makes full-disk encryption an attractive option for 
protecting all data on their phone. 

Wang et al also developed an alternative file system-
based encryption scheme in [13] using Filesystem in 
Userspace (FUSE) kernel support, EncFS binaries, and 
libfuse. While the others claim the installation of their 
proposed encrypted file system is easy to install, it does 
require both rooting an Android device and flashing with a 
customized kernel, making adoption by a large market 
unlikely. The authors noted a significant cost in overhead 
and slowdown in database transactions using an encrypted 
file systems, but were also able to optimize it for 10% to 
60% performance gains. 

While full disk encryption methods are generally easy to 
use and implement on a device, they also suffer from several 
drawbacks. As noted in [13], encrypting an entire partition 
can be noticeably detrimental to system performance and 
resource usage and may, in the case of larger disks, require a 
significant amount of setup time. Moreover, full disk 
encryption will encrypt all data on a device – even unused 
or garbage bytes – and does not provide the user fine-tune 
controls over what is to be encrypted. 

 
C. Identity-based Cryptography and Biometrics 

Our proposed scheme uses host-based parameter of the 
device identy (specifically, the mobile phone’s unique 
IMEI) to derive the cryptographic key. Identity-based 

cryptography, first proposed by Shamir [23], is widely used 
in publicly accessible environment, such as WiFi, and offers 
secure (symmetric) session key exchange protocols 
leveraging public-private key cryptography (where the 
identity information is used as public keys) [24, 25, 26]. In 
contrast to the prior work, however, we focus on physically 
small and computationally constrained mobile phone 
devices (as opposed to more capable machines such as 
computers), and our contribution focus is on reducing the 
processing load of the key generation and the encryption 
process. Furthermore, we use password in addition to the 
device identity to increase the key entropy.  

Biometrics has also been used as user-unique credentials 
for cryptography, as is evident with the emergence of 
consumer-grade phones using body contact and biometrics 
for authentication, e.g., Apple’s iPhone 6. Of particular 
interest is work done by Zhao et al in [20] in deploying 
biometric  encryption (BE), using something a person is to 
either control access to an encryption key, generate an 
encryption key, or is bound directly to the key itself. Their 
work examines the possibility of using BE in mobile cloud 
computing, using an underlying framework that uses 
biometric data to handle data encryption. While BE is can 
potentially be a user-friendly and very secure way 
associating a physical characteristic to an encryption key, 
BE still faces many problems, such as a high false negative 
rate, sensor subversion, and high power consumption,  until 
it can be widely deployed. Further cryptographic 
applications of biometrics are in wearable or implantable 
devices [27, 28, 29]. These body-touching devices share 
many similar traits as mobile phones in that they support 
mobility, are increasingly becoming intelligent with 
growing computing capabilities, and are constrained with 
the limited processing resources in both size and power. 
These application domains have high synergy with our 
research principles of lightweight computing but are beyond 
the scope of this paper. Thus, we leave the use of biometrics 
and other user credentials for security as future work.  

 

VI. CONCLUSION 
This paper proposed a lightweight encryption algorithm 

designed on mobile devices, with the goal of reducing the 
power consumption and resource usage. By doing so, it can 
a practical solution for encrypting large volumes of data in 
our local mobile devices to preserve data security. It enables 
end users to protect their data themselves instead of fully 
trusting the Cloud vendors. The experimental results of the 
proposed method show encouraging performance compared 
to other Android encryption applications, and could be a 
strong approach to being able to move large volumes of 
encrypted data to and from cloud storage. 

Our current procedure relies on two unique data to seed 
the key that is used in the encryption algorithm: a user 
password and the device ID. In other words, this key is 
seeded by something the user knows (the password) and 
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something the user has (the physical device on which the ID 
is stored). Continuing in this manner, the seed could include 
a third item – something the user is (i.e., biometrics) – to 
add an additional element of security to key derivation and 
encryption. This approach allows only legitimate users to 
generate their keys with a small effort to remember what 
users knows or has.  

Based on the unique information for mobile devices, this 
paper also proposes a secure remote user authentication 
protocol without exchanging sensitive information. It 
doesn’t require a third-party authority for mutual 
authentication. It can be performed by minimal 
communication overhead.  

We would also like to further explore ways to optimize 
the algorithm in terms of security, easy-of-use, performance 
and scalability. We are currently investigating the impact 
certain steps of the algorithm play in the performance and 
resource use of procedure, as well as what role they play in 
strengthening the security of the algorithm. Additionally, we 
will consider using a more parallelizable mode of 
encryption over cipher block chaining such as counter mode 
(CTR) or CBC with ciphertext stealing (CTS). 
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