
__
1This research was supported by SJSU undergraduate research award and in part by
Singapore's Agency for Science, Technology and Research (A*STAR), under a
research grant for the Human-centered Cyber-physical Systems Programme at the
Advanced Digital Sciences Center.
2This author is a corresponding author.

A Lightweight Encryption and Secure Protocol for Smartphone Cloud1

William Zegers
Computer Engineering

San Jose State University
San Jose, USA

william.zegers@sjsu.edu

Sang-Yoon Chang
Advanced Digital Science Center

Singapore, Singapore
sychg@adsc.com.sg

Younghee Park2, Jerry Gao
Computer Engineering

San Jose State University
San Jose, USA

{younghee.park, jerry.gao}@sjsu.edu

Abstract— User data on mobile devices are always transferred
into Cloud for flexible and location-independent access to
services and resources. The issues of data security and privacy
data have been often reverted to contractual partners and
trusted third parties. As a matter of fact, to project data, data
encryption and user authentication are fundamental
requirements between the mobile devices and the Cloud before
a data transfer. However, due to limited resources of the
smartphones and the unawareness of security from users, data
encryption has been the last priority in mobile devices, and the
authentication between two entities always depends on a
trusted third party. In this paper, we propose a lightweight
encryption algorithm and a security handshaking protocol for
use specifically between in mobile devices and in Cloud, with
the intent of securing data on the user side before it is migrated
to cloud storages. The proposed cryptographic scheme and
security protocol make use of unique device specific identifiers
and user supplied credentials. It aims to achieve a users-
oriented approach for Smartphone Cloud. Through
experiments, we demonstrated that the proposed
cryptographic scheme requires less power consumption on
mobile devices.

Keywords; Security, Mobile devices and smartphones,
Android, Cryptography, Cloud

I. INTRODUCTION
Over the past decade, mobile devices such as smart

phones and tablets have caused a paradigm shift into nearly
every field of the computing industry, including wireless
networking, web-based business models, and the methods
by which data are transmitted between clients, servers, or
other clients. Furthermore, this shift has meant services and
data becoming more readily available to mobile device
users; consumers no longer require access to traditional,
more stationary computers to be able to access web-based
services, communicate, or access personal or shared data.

Recently, customer data on a device is automatically
backed up to clouds as clouding environment has been
popularly deployed like iCloud, Azure, EC2, and so on. To
protect the customer data, data encryption is an unavoidable
solution. However, mobile devices have a pain to process
the data encryption due to limited power and resources even
though many data encryption algorithms have been

proposed for several decades. Usually, encryption has been
diminished in order to improve processing speed [6, 11, 12].

Since version 4.0, Android has included the ability for
whole disk encryption [4], many mobile solutions exist for
users to encrypt data and individual file locally, or to
encrypt data to by stored in the cloud. However, these tend
to use methods originally designed for systems where
resources such as battery life and memory footprint are less
constrained than mobile devices. For large exchanges of
data between mobile devices and remote storage servers, the
additional overhead incurred by encryption and decryption
can accumulate to be detrimental to the resources of mobile
devices. To mitigate the threat of data theft, it is evident that
a reliable encryption scheme is needed to protect data – both
physically and while in transit to cloud services – while
taking into account the resource constraints of battery-
powered mobile devices.

In this paper, a lightweight encryption scheme is
proposed on a block cipher. It consists of substitutions,
permutations, and rotations. The key is securely generated
by a user credential and unique device information. The
proposed method aims to minimize the amount of
processing time and power consumption, comparing to
existing mobile encryption applications. Furthermore, a
remote secure authentication protocol is proposed without a
third party authority. The security protocol utilizes a user
password and device information to authenticate the user
and the cloud service provider. Each party can generate the
common secret key based on its own information. The
proposed security protocol contributes to the minimum
communication overhead since they just need to exchange
random numbers. The proposed methods aim to achieve
user-centric encryption and authentication instead of
depending on a third party.

This paper introduces a new scheme to encrypt data on
the device side that uses the native APIs of the Android
framework. Implemented specifically for use on the
Android mobile platform, the scheme is designed to use the
functionality and APIs provided by the Android framework
itself to provide encryption with the goal that by catering
specifically to a mobile-based platform, resources use is
more tailored for mobile devices and able to reduce the
overhead caused by traditional encryption schemes. This

2015 IEEE Symposium on Service-Oriented System Engineering

978-1-4799-8356-8/15 $31.00 © 2015 IEEE

DOI 10.1109/SOSE.2015.47

259

reduced resource use, in turn, will be more suited to allow
Android devices to exchange and encrypt/decrypt larger
volumes of data with cloud-storage servers. Furthermore,
our scheme uses principles of secure encryption, such as
non-linearity, cipher block chaining, and byte scrambling, to
protect confidentiality of data.

This paper contributes to the development of the new
lightweight encryption algorithm and the new security
protocol for mutual authentications for mobile cloud
computing. We develop a usable encryption application for
Android phones and evaluate it on a real smartphone device.
Through experiments, the proposed method demonstrates
the feasibility of user-centric encryption and authentication
scheme for mobile cloud computing.

In section II of this paper, we outline a proposed method
for the design of this encryption scheme, describing the
algorithm, scheme, and implementation of the encryption
program itself as an Android application. Section III
compares the proposed method with other methods currently
in use in the industry. The experimental design to measure
the performance of the proposed scheme is described in
section IV, detailing the setup and measurements taken to
determine how the proposed method performs. Section V
examines the results of section IV, namely by examining the
implications of these results and how they compare to other
available encryption schemes. Finally, section VI concludes
the paper with an overview of the previous sections.

II. THE PROPOSED METHOD
A new encryption algorithm and secure handshaking

protocol are proposed to protect data on mobile phones based
on a user password and a unique device identifier. It is based
on a user-centric method instead of depending Cloud Service
Providers (CSP). It aims to encrypt personal data on the
limited resource environment before a data transfer into
Cloud. When users need to access their data, authentication
is performed between the smartphones and the CSP based on
the device information. The following sections will be given
a description of the proposed methods in detail.

A. A Lightweight Encryption Algorithm
Encryption consists of an initial XOR operation,

followed by several steps of matrix transformations to
shuffle the data; decryption is simply reverse of the
encryption procedure, using inverted lookup tables for the
substitution and column permutation steps. Each block of
data undergoes seven rounds of encryption (or decryption),
and the scheme uses CBC mode to minimize the chance of
two blocks of plaintext producing identical blocks of
ciphertext.

Fig. 1 gives the overall architecture of the round-based
encryption scheme. It is designed as a block cipher using
144-bit keys that operates on 128-bit blocks at a time. The
encryption procedure is repeated for a total of seven rounds,
using a unique 144-bit key for each round. Fig. 2 provides a
precise algorithm converts each plaintext block to a cipher

text block. Based on Fig. 2, each components are described
in detail.

Figure 1. The round-based encryption scheme used to encrypt each block
of data, consisting of seven rounds, with each round using a unique round
and permutation key, to produce an encrypted ciphertext block.

The architecture uses seven repeated rounds, each with its
own independent key, to ensure thorough obfuscation of the
orginal data while still remaining lightweight. So while each
block is being encrypted by running it through several
rounds of the encryption algorithm, the architecture uses as
few rounds as possible to limit consuming too much
processing power.

The key is derived from a user-supplied password and
device ID, using a unique hardware identification with
something only the authorized knows to generate the 1008-
bit key. By using two sources of input to derive the key, this
helps to limit that opportunity to obtain full credentials to
decrypt the data.

1) Key Derivation: The derived key is, consequently,

based on something the user knows (e.g. a password) and
something the user has (i.e. a unique device identifier),
making decryption of the encrypted data possible only by
the user who knows the password and on the device on
which it was originally encrypted. Only authorized user can
generate a right key based on the two factors that can be
selected from various data, such as user biometric
information, device unique numbers (e.g. IMEI, MEID,
ESN, IMSI based on Android) [14]. We use PBKDF2
(Password-based Key Derivation Function) [15] as shown in
Fig. 1 and it generates a 1008-bit key from a user password
and IMEI(device ID) that we choose.

The derived key is used as round, XOR, and permutation
keys after breakup. In other words, the 1008-bit key is

260

broken into seven 144-bit round keys, each of which is
further broken down into two parts: a 128-bit XOR key and
a 16-bit permutation key that determines the permutations of
the block in later steps of the algorithm.

2) Cipher Block Chaining(CBC): Before being fed to

the into the actual encryption algorithm, the scheme uses
CBC mode to change the bytes of the plaintext data; that is,
each block of plaintext is XORed with the previous block of
ciphertext. The result of the XOR then becomes the input
for the encryption function. In the case of the first block,
where no previous block exists, the salt used to seed the
password is also used for a random IV to XOR with the first
block of data. Each 128-bit plaintext block is XORed with
the 128-bit round key to produce a new block consisting of
ciphertext.

3) Substitution: Using Rijndael substitution blocks [16],

each byte in the XORed block is substituted for a new byte
using a basic lookup table. This further reduces the linearity
of the algorithms, making it less susceptible to differential
and linear cryptanalysis. The substitution is performed by a
one-dimensional array constructed from the Rijndael S-boxe
in [16]. After substitution, the newly substituted bytes in the
ciphertext block are, from this point forward, treated as a 4 x
4 matrix. The matrix after configuring blocks is processed
by the step of column permutation.

 00 01 10 11
00xx 1243 2341 3412 1342
01xx 4231 2314 4312 3421
10xx 4132 4123 1234 2413
11xx 3124 1423 3241 2134

Table 1. Column permutation done using 4 bits from the permutation key,
with each cell showing the re-ordering of the original column order.

4) Column permutation: The column permutation is

performed two times before and after Row Rotation as
shown in Figure 2. In the first column permutation, the first
four bits of the 16 bit permutation key determine how the
columns of the 4 x 4 matrix are permuted using a lookup
table provided in the code of the application in Table 1.
Given an input block, a 4-bit column permutation index, and
a one-dimensional array constructed from Table 1. In the
second column permutation, the procedure permutes the
columns once more to shuffle the ciphertext bytes using the
last four bits of the permutation key.

5) Row rotation: The next 8-bit are split amongst the 4

rows, 2 per row, and determine the amount by which the
row gets rotated to the left. For example, a bit series of 10
would rotate the row two to the left, while a 00 bit series
would cause the row to remain the same. Since the four 2-
bit rotation number sit over the border of two bytes, we use
individual bit manipulation to extract these numbers and
apply them to their corresponding row.

6) Padding: In the case that the final block of the data to
be encrypted is not a full of 16 bytes, additional bytes are
added to make the same block size. Block padding is
handled when each block is being read from the file to be
encrypted. If the method reaches the end of file marker, it
checks the number of bytes read into the current block and,
if this number is less than sixteen bytes, it pads the block
with the appropriate bytes and continues to encrypt the
block as usual. For example, if the final block is only 10
bytes long, six copies of the byte 0x06 are appended to the
block to create sixteen bytes. During decryption, removal of
these bytes is done by simply examining the last byte of the
last block, and removing that many bytes.

The encryption procedure is repeated for a total of seven
rounds, using a unique 144-bit keys for each round. The
proposed cryptography system is designed by a typical
block cipher based on substitutions and permutations. The
key is generated by a user password and a unique device
identification.

Figure 2. A diagram of the encryption algorithm being implemented,
showing the steps and function carried out on each 128-bit data block.

261

B. Decryption Algorithm
Decryption algorithm is described according to the

encryption scheme in reverse order. First, we generate the
same key based on the PBKDF2 function with the same user
password and the device’s IMEI in order to decrypt the
encrypted data. [SYC: Referring back to the Key Derivation
Section to remind the readers how the receiver (whether it is
the transmitter itself or not) is capable of key generation and
decryption will be helpful.] Second, now the decryption
process is similar to the encryption method as follows.

1) Permute the columns using the last four bits of the

permutation key to look up the specific permutation.
2) Use permutation key bits 4 through 11 to rotate the rows

to the right, similar to the fashion described in step 7 of
encryption.

3) Permute the columns again using the first four bits of the
permutation key.

4) Substitute each byte of the block using the inverse
Rijndael S-box.

5) XOR the bytes with the round key.
6) Repeat steps 1 through 5 for seven rounds to generate the

original plaintext of the data.
7) Finally, the decryption algorithm undoes the XOR

operation from CBC mode by outputting the XOR of the
previous ciphertext with the output of steps 1 – 6 to
reproduce the initial plaintext.

 00 01 10 11

00xx 1243 4123 3412 1423
01xx 4231 3124 3421 4312
10xx 2431 2341 1234 3142
11xx 2314 1342 4213 2134

Figure 3. Inverse column permutations used during decryption

Both the column permutations and the Rijndael S-boxes
from the encryption method are inverted revert the data back
to its original positions. Figure 3 gives the inverted column
permutations and the reverse Rijndael S-box is also used
during the substitution step of decryption, respectively.
After a successful decryption, the method removes the
padding bytes from the end of the decrypted file. The result
is a decrypted copy of the encrypted file.

C. User Authetication
This paper proposes a remote secure user authentication

protocol in order to allow users to access their data without
disclosing any secret information over communications
between users and the cloud service provider (CSP). Section
II.A briefly mentioned the scenario of implementing the
proposed encryption on a mobile cloud service provider,
allowing for more universal access of the data. However,
this means that at some point, devices using the mobile
cloud would need to exchange the IMEI, provided password
in order for the provider to be able to authenticate users.
This could, of course, be accomplished at the initial stage

wherein a user is registering her device with the mobile
cloud provider and, using an agreed upon the use of cloud
service.

Fig. 3 shows a user authentication protocol based on a
user password, a device identification number, and random
numbers. As shown in Fig. 3, the authorized users and CSP
can compute a shared secret key K, where K is gb(a+uW) mod
p. Note that p is a large prime number known to both
entities, g is a generator in the finite field Fp, and a and b is
a random number only known to each entity. The CSP
stores gW mod p, where W is a function of the user
password, instead of saving the user password. The user can
also calculate W from his or her own password. Both of
them can also generate u, where u is a 32-bit number
derived from the user device identification number (e.g.
IMEI, MEID, ESN, IMSI based on Android).

Based on the initial settings, the CSP can compute
gb(a+uW) mod p since it knows b, W, u. The mobile user can
also compute the same key K because he knows a, W, u.
Based on the generated shared key, the last two steps can
finish to authenticate each other with a nonce each time, as
described in Fig. 3. During the communications, any secret
information is never exchanged. Even though attackers
intercept any conversations, they cannot generate the
temporary session keys or user passwords. The nonce, C1
and C2 can be changed with a timestamp to avoid replay
attacks in the future.

The benefit of the proposed protocol does not rely on a
third-party authority (i.e. Certificate Authority, CA) to
negotiate a connection between the device and mobile
cloud. The third-party authority causes a lot of challenging
issues: a deployment, a single-point failure, a certificate
management, revocation, and so on [30]. However, the
proposed authentication protocol is performed between two
parties without a third-part authority. It is based on two
factors by using a password and unique device information
for mutual authentication.

Smartphone Users Cloud Service Providers

Alice, ga mod p

CSP, gb mod p, C1

K{C1-1}, C2

K{C2-1}

(A user(Alice) knows W,
 u derived from devide_ID)

(CSP stores “Alice, gW mod P,
u from the user device_ID)

Note that K = gb(a+uW) mod p
Figure 3. A secure remote password protocol for user authentication. The
CSP has gW mod p, where W is a function of the user password. The user
can calculate W from his or her own password.

262

III. EVALUATION

A. Implmentation and Experiment in Software
To evaluate the proposed method, it was implemented

on Java platform SE 7 with the Android SDK to create an
application. In addition, to generate a key, we used
Password-based Key Derivation Function 2 (PBKDF2) from
a user password concatenated with the device IMEI as the
seed. It is a standard cryptographic function that takes a
seed, salt, generated key size, iteration count, and hashing
algorithm to produce the encryption keys. For our method,
the algorithm generates a key with size 1008 bits (i.e., 144
bits times seven rounds). The salt and iteration count are
used to slow any offline attacks on a password-based key
derivation function, such as dictionary and brute force
attacks. The salt constitutes the header of the encrypted file
so it can be easily retrieved during decryption, which is then
followed by the body of encrypted bytes.

To compare the performance of the proposed method
with other available methods, two popular encryption
applications: Cryptonite and DroidCrypt. We used our
device to evaluate performance overhead for the proposed
method. We used Nexus 7 with Android 4.4.2, 1GB RAM,
Non-removable Li-Ion 4325 mAh battery (16 Wh).
Qualcomm Trepn Profiler1 is used to experiment power
consumption and CPU frequency for different available
encryption applications for Android. Trepn Profiler is a
diagnostic tool to profile the performance and power
consumption of Android applications running on devices.

Table 1 shows the summary of each application for our
evaluation. We selected two different applications. The two
applications are based on Advanced Encryption Standard
(AES), one of block ciphers. To compare our proposed
algorithm, we use the same key size and block size as
shown in Table 1. However, the applications also support
different algorithms like Blowfish, RC6.

Table 1. Cryptographic applications for Android devices.

 Algorithms Key Size Block Size
Crytonite AES 128 128

DroidCrypt AES 128 128
Our Approach - 144 128

Fig. 4 demonstrated our application keep maintaining

the smallest power when we encrypted 100KB file. The
current power usage indicated the total power consumptions
after starting each application on the device. The average
power usage indicated the power consumption on average
after the Trepn Profiler started. The CPU frequency was
1.026 MHz for our approach. The other application showed
1.512MHz CPU frequency to encrypt 100KB file.

(a) Cryptonite (b) DroidCrypt (c) Our Approach

Figure 4. Evaluation for power consumption for Android applications.

B. Implmentation and Experiment in Hardware
In order to examine the performance of the algorithm

and regards to processing resources consumed and speed,
the proposed algorithm was also simulated at the hardware
level using Verilog HDL. The PBKDF was ignored for the
hardware implementation to focus on the performance of the
algorithm itself, so the simulation supplied a hard-coded key
to the algorithm without any generation.

To judge performance, we examined the execution time
of the proposed algorithm and compared it to the execution
of the Data Encryption Standard (DES), similar to AES in a
block cipher. Setup times of signals between registers were
examined, and the longest signal setup time for each
algorithm was deemed to be the limiting factor of the clock-
cyle time; similar to how a manufacturing assembly line can
only output a product as fast as the slowest stage in line.
The limiting cycle-time was multiplied by the total number
of cycles necessary to encrypt one 16-byte block of data to
give the total execution time per block of data; that is:

texecution = tslowest instr. X cycles/block

Timing analysis of the hardware modules, the basis for

estimating the cycle-time per instruction, after placement
and routing of the HDL code. This analysis may be in slight
disagreement with actual results were the algorithms
implemented on actual hardware, but the estimation was
deemed suitable to compare two algorithms.

Hardware testing in Verilog gave very promising results,
though problems with some module implementation would
not allow for a thorough analysis of all signals due to
limitations of the simulation software.

The DES was given as 12.930 ns inside the module that
handled the initial permutation of data encryption.
Furthermore, the total number of cycles necessary to encrypt
one block of data was found to be a total instruction count

1QUALCOMM Trepn Profiler at https://developer.qualcomm.com/mobile-
development/increase-app-performance/trepn-profiler.

263

of 81 instructions, giving a total execution time per block
encryption of about 1.050 μs.

For our proposed algorithm, obtaining signal setup times
proved to be slightly more challenging, as some of the
modules could not be full simulated as hardware by the
simulation software. Nonetheless, we obtained a maximum
cycle time of 7.482 ns and a total instruction count of 21
instructions. This execution time of our result when
implemented in hardware turned out to be a significant
improvement over DES, giving a total of 0.160 μs execution
time per block of encrypted data.

IV. DISCUSSION
Our motivation in the design of our encryption scheme

was to build a lightweight and low-power method that could
be implemented on mobile devices, with a particular focus
on securing data to be stored in the cloud. On the cloud –
and even during transmission from device to cloud – the
data exists outside of the user’s immediate control, and how
effectively it is secured is dependent on the storage
provider’s security. This security could potentially have
many risks that a user may deem unacceptable to host
unencrypted data: a security breach by cyber criminals, a
malicious or simply careless administrator, or even user
error when dealing with a new or unfamiliar system.

The encryption scheme is intended to encrypt data on the
user’s device before it is transmitted and stored in cloud
storage. Moreover, since it is being run on a mobile device
where power consumption and memory usage are much
more constrained than on traditional computers, we
designed the algorithm with the goal of having a reduced
overall CPU usage and memory footprint versus other
encryption methods.

Of course, encrypting only a few kilobytes or even
megabytes of data at a time on a mobile device will show
little impact on the amount of power and memory being
consumed. However, as device users are migrating their
data from local to cloud storage, sending and receiving data
that must encrypted and decrypted, ever-growing exchanges
of data will put larger and larger demands on resource use.
A high enough volume of data exchange that needs
encryption and decryption to ensure its confidentiality can
accumulate to become a significant enough drain on limited
system resources.

With this in mind, our algorithm was designed to be
simple and efficient. We constructed the algorithm to be
easily implemented on the Android system, using a simple
XOR operation followed by several rounds of key-based
matrix transformations as the backbone of the scheme. With
our base encryption algorithm, we added further
modifications and steps to it in order to ensure such security
and cryptographic principles as non-linearity, by using byte
substitution, and semantic security, using multiple rounds of
encryption and running the entire scheme in CBC mode,
were included in our encryption scheme.

The method operates at the byte level of data, so it is
able to encrypt any file regardless of type or size.
Encryption of the file does not cause any significant
expansion in file size, only an additional 32 bytes for the
prepended salt and “encrypted” string, plus a maximum of
16 bytes resulting from padding the final block. For the
average file likely to be encrypted, these additional bytes are
negligible.

We believe our algorithm is a step in building a bridge
between increased demands, both personal and business, for
mobile security, while at the same time being able to make
safe, effective use of cloud-storage systems without having
a detrimental impact to resources and performance on
mobile systems.

V. RELEATED WORK
Rapid mobile device proliferation and the maturing of

cloud computing technologies introduces new challenges
and opportunities in the field of data security and privacy, as
work continues to boost mobile device storage and
processing resources offered by cloud computing. Security
architectures and encryption schemes for mobile cloud
computing have been proposed by others working to find an
effective way to secure data stored on an external, remote
site while at the same time limiting the amount of resources,
such as memory footprint and CPU usage, such security
measures would incur.

A. Symmetric and Asymmetric Encryption

There exists much debate over whether using symmetric
or asymmetric encryption schemes are best for data
encryption. Symmetric encryption allows for faster
encryption of data at a relatively low resource cost;
asymmetric, on the other\hand, is much slower and requires
more resources to attain the same level of security as
symmetric, but does not have the problems often associated
with key management as symmetric encryption.

Subasree and Sakthivel introduce in [17] a protocol
using ECC to encrypt data, as well as Dual RSA to encrypt
the message hash used to ensure integrity. Since this
protocol relies on ECC and RSA, both of which are
asymmetric encryption schemes, it is significantly slower
than symmetric encryption.

Alternatively, hybrid schemes that include both
symmetric and asymmetric elements have been proposed in
[18], [19], and [20]. Kader et al not only evaluate several of
these proposed protocols, including those mentioned in [19]
and [20], but also propose their own New Hybrid
Encryption Protocol (NHEP). In this protocol, block of data
are divided in half, encrypting the first half using AES
(symmetric) with ECC (asymmetric), and the second half
using Blowfish (symmetric) with RSA (asymmetric). For
both halves, the respective asymmetric encryptions are used
to encrypt the secret key, which is used by the symmetric
algorithms to encrypt the data. Experimental testing of

264

NHEP showed a significant edge over other hybrid
encryption algorithms.

Often in symmetric encryption, a difficulty with secret
management comes from the recommendations on key
lifetimes and updates, after which a key can no longer be
considered secure and data encrypted under this key must be
re-encrypted using a new key. The work of Watanabe and
Yoshino in [21] present a way to mitigate the risk of “key
leakage” during the periodic key update. In their proposed
scheme, the authors use symmetric encryption with an all-
or-nothing transform add an increased level of security to
encrypted data. In this scheme, the all-or-nothing transform
ensures that even if part of the secret key and ciphertext is
leaked, without the whole key and ciphertext, any obtained
information from this leakage reveals nothing about the
plaintext and is, effectively, garbage data.

B. Full Disk Encryption

One option for protecting data on mobile devices is to
use a full disk encryption solution, wherein the Android
operating system initially encrypts existing data on an entire
storage volume, as well as all bytes written to it thereafter.
On devices running the Android operating system, full disk
encryption has been available since version 3.0 (aka,
Honeycomb). Disk encryption on Android is handled
throughout API calls to the kernel’s crypto library; however,
at the application level, the process is a fairly intuitive series
of steps that guides the user through the encryption process.
While it can take up to an hour to encrypt a device, the ease
of use makes full-disk encryption an attractive option for
protecting all data on their phone.

Wang et al also developed an alternative file system-
based encryption scheme in [13] using Filesystem in
Userspace (FUSE) kernel support, EncFS binaries, and
libfuse. While the others claim the installation of their
proposed encrypted file system is easy to install, it does
require both rooting an Android device and flashing with a
customized kernel, making adoption by a large market
unlikely. The authors noted a significant cost in overhead
and slowdown in database transactions using an encrypted
file systems, but were also able to optimize it for 10% to
60% performance gains.

While full disk encryption methods are generally easy to
use and implement on a device, they also suffer from several
drawbacks. As noted in [13], encrypting an entire partition
can be noticeably detrimental to system performance and
resource usage and may, in the case of larger disks, require a
significant amount of setup time. Moreover, full disk
encryption will encrypt all data on a device – even unused
or garbage bytes – and does not provide the user fine-tune
controls over what is to be encrypted.

C. Identity-based Cryptography and Biometrics

Our proposed scheme uses host-based parameter of the
device identy (specifically, the mobile phone’s unique
IMEI) to derive the cryptographic key. Identity-based

cryptography, first proposed by Shamir [23], is widely used
in publicly accessible environment, such as WiFi, and offers
secure (symmetric) session key exchange protocols
leveraging public-private key cryptography (where the
identity information is used as public keys) [24, 25, 26]. In
contrast to the prior work, however, we focus on physically
small and computationally constrained mobile phone
devices (as opposed to more capable machines such as
computers), and our contribution focus is on reducing the
processing load of the key generation and the encryption
process. Furthermore, we use password in addition to the
device identity to increase the key entropy.

Biometrics has also been used as user-unique credentials
for cryptography, as is evident with the emergence of
consumer-grade phones using body contact and biometrics
for authentication, e.g., Apple’s iPhone 6. Of particular
interest is work done by Zhao et al in [20] in deploying
biometric encryption (BE), using something a person is to
either control access to an encryption key, generate an
encryption key, or is bound directly to the key itself. Their
work examines the possibility of using BE in mobile cloud
computing, using an underlying framework that uses
biometric data to handle data encryption. While BE is can
potentially be a user-friendly and very secure way
associating a physical characteristic to an encryption key,
BE still faces many problems, such as a high false negative
rate, sensor subversion, and high power consumption, until
it can be widely deployed. Further cryptographic
applications of biometrics are in wearable or implantable
devices [27, 28, 29]. These body-touching devices share
many similar traits as mobile phones in that they support
mobility, are increasingly becoming intelligent with
growing computing capabilities, and are constrained with
the limited processing resources in both size and power.
These application domains have high synergy with our
research principles of lightweight computing but are beyond
the scope of this paper. Thus, we leave the use of biometrics
and other user credentials for security as future work.

VI. CONCLUSION
This paper proposed a lightweight encryption algorithm

designed on mobile devices, with the goal of reducing the
power consumption and resource usage. By doing so, it can
a practical solution for encrypting large volumes of data in
our local mobile devices to preserve data security. It enables
end users to protect their data themselves instead of fully
trusting the Cloud vendors. The experimental results of the
proposed method show encouraging performance compared
to other Android encryption applications, and could be a
strong approach to being able to move large volumes of
encrypted data to and from cloud storage.

Our current procedure relies on two unique data to seed
the key that is used in the encryption algorithm: a user
password and the device ID. In other words, this key is
seeded by something the user knows (the password) and

265

something the user has (the physical device on which the ID
is stored). Continuing in this manner, the seed could include
a third item – something the user is (i.e., biometrics) – to
add an additional element of security to key derivation and
encryption. This approach allows only legitimate users to
generate their keys with a small effort to remember what
users knows or has.

Based on the unique information for mobile devices, this
paper also proposes a secure remote user authentication
protocol without exchanging sensitive information. It
doesn’t require a third-party authority for mutual
authentication. It can be performed by minimal
communication overhead.

We would also like to further explore ways to optimize
the algorithm in terms of security, easy-of-use, performance
and scalability. We are currently investigating the impact
certain steps of the algorithm play in the performance and
resource use of procedure, as well as what role they play in
strengthening the security of the algorithm. Additionally, we
will consider using a more parallelizable mode of
encryption over cipher block chaining such as counter mode
(CTR) or CBC with ciphertext stealing (CTS).

REFERENCES
[1] A. Braga, “Integrated Technologies for Communication Security on
Mobile Devices,” MOBILITY 2013, The Third International Conference
on Mobile Services, Resources, and Users, November 2013.
[2] B. Dominic, and R. Crina, “Steganography and Cryptography on
Mobile Platforms,” Constanta Maritime University Annals 20, 2013.
[3] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” Advances in Cryptology—CRYPTO’99,
January 1999.
[4] J. Götzfried and T. Müller, “Analysing Android’s Full Disk Encryption
Feature,” Journal of Wireless Mobile Networks, Ubiquitous Computing,
and Dependable Applications (JoWUA), (2014)
[5] R. Jain, R. Jejurkar, S. Chopade, S. Vaidya, and M. Sanap, “AES
Algorithm Using 512 Bit Key Implementation for Secure Communication.”
[6] B. Bhargava, C. Shi, and S. Wang, “MPEG video encryption
algorithms.” Multimedia Tools and Applications, 2004.
[7] R. K. Y. Nishika, “A Lookup Table Based Secure Cryptographic SMS
Communication on Android Environment,” 2013.
[8] A. Patil and R. Goudar, "Sensitive Data Storage in Wireless Devices
Using AES Algorithm."
[9] A. Skillen, D. Barrera,and P. C. van Oorschot, (2013, November).
“Deadbolt: locking down android disk encryption.” Proceedings of the
Third ACM workshop on Security and privacy in smartphones & mobile
devices, November 2013.
[10] G. J. Simmons, “Symmetric and asymmetric encryption,” ACM
Computing Surveys (CSUR), 1979.

[11] Z. Liu, D. Peng, Y. Zheng, and J. Liu, “Communication protection in
IP-based video surveillance system,” IEEE International Symposium on
Multimedia, December 2005.
[12] L. Qiao and K. Nahrstedt, “Comparison of MPEG encryption
algorithms,” In Internation Journal on Computer & Graphics, 1998.
[13] Z. Wang, R. Murmuria, and A. Stavrou, “Implementing and
optimizing an encryption filesystem on android,” Mobile Data
Management (MDM), July 2012.
[14] Android Developer Guide, The Developer’s Guide-Android,
https://developer.android.com.
[15] B. Kaliski, “Password-Based Cryptography Specification Version
2.0”, RFC 2898, September 2000.
[16] Joan Daemen and Vincent Rijmen, “The Design of Rijndael, AES -
The Advanced Encryption Standard, “ Springer-Verlag 2002.
[17] S. Subasree annd N. K. Sakthivel, “Design of a new security protocol
using hybrid cryptography algorithms,” IJRRAS, February 2, 2010.
[18] H. M. A. Kader, M. M. Hadhoud, S. M. El-Sayed, and D. S.
AbdElminaam, “Performance Evaluation Of New Hybrid Encryption
Algorithms To Be Used For Mobile Cloud Computing,” 2014.
[19] N. Kumar, “A Secure communication wireless sensor network
through hybrid (AES+ECC) algorithm”, von LAP LAMBERT Academic
Publishing, 2012.
[20] W. Ren and Z. Miao, “A new security protocol using hybrid
cryptography,” International Computer Engineering Conference
(ICENCO), 2013.
[21] D. Watanabe and M. Yoshino. "Key Update Mechanism for Network
Storage of Encrypted Data." Cloud Computing Technology and Science
(CloudCom), 2013 IEEE 5th International Conference, 2013.
[22] K. Zhao, H. Jin, D. Zou, G. Chen, and W. Dai. "Feasibility of
Deploying Biometric Encryption in Mobile Cloud Computing." ChinaGrid
Annual Conference (ChinaGrid), 2013.
[23] A. Shamir, “Identity-based Cryptosystems and Signature Schemes,”
Lecutre Notes in Computer Science, vol. 196, pp. 47-53, 1985.
[24] J. Choi, S. Y. Chang, D. Ko, Y. Ch. Hu, “Secure MAC-Layer Protocol
for Captive Portals in Wireless Hotspots,” IEEE Internation Conference on
Communications (ICC), 2011.
[25] S. Taha and X. Shen. “A Link-Laeyer Authentication and Key
Agreement Scheme for Mobile Public Hotspots in NEMO based VANET,”
IEEE Global Communications Conference (Globecom), 2012.
[26] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
Key Encryption with Keyword Search,” Internation Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT),
2004.
[27] M. Rostami, W. Burleson, A. Juels, and F. Koushanfar, “Balancing
Security and Utility in Medical Devices?” Design Automation Conference
(DAC), 2013.
[28] M. Rushanan, A. D. Rubin, D. F. Kune, and C. M. Swanson, “SoK:
Security and Privacy in Medical Devices and Body Area Network,” IEEE
Symposium on Security & Privacy (S&P), 2014.
[29] S. Y. Chang, Y. C. Hu, H. Anderson, T. Fu, and E. Huang, “Body
Area Network Security: Robust Key Establishment Using Human Body
Channel,” USENIX Workshop on Health Security and Privacy
(HealthSec), 2012.
[30] Syam Kumar P, Subramanian R, “An Efficient and Secure Protocol for
Ensuring Data Storage Security in Cloud Computing,” International
Journal of Computer Science, Vol. 8, Issue 6, No 1, November 2011.

266

