
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Distributed Security Network Functions against 
Botnet Attacks in Software-defined Networks 

 

Younghee Park Nikhil Nikhil Vijayakumar Kengalahalli Sang-Yoon Chang 

Computer Engineering Department Computer Engineering Department Computer Science Department 

San Jose State University San Jose State University University of Colorado Colorado Springs 

San Jose, CA San Jose, CA Colorado Springs, CO USA 

younghee.park@sjsu.edu nikhilvijayakumar.kengalahalli@sjsu.edu schang2@uccs.edu 

Abstract— For the past decade, botnets have dominated 
network attacks in spite of significant research advances in 
defending against them. The distributed attack sources, the 
network size, and the diverse botnet attack techniques challenge 
the effectiveness of a single-point centralized security solution. 
This paper proposes a distributed security system against large-
scale disruptive botnet attacks by using SDN/NFV and machine-
learning. In our system, a set of distributed network functions 
detect network attacks for each protocol and to collect real-time 
traffic information, which also gets relayed to the SDN controller 
for more sophisticated analyses. The SDN controller then 
analyzes the real-time traffic with the only forwarded 
information using machine learning and updates the flow rule or 
take routing/bandwidth-control measures, which get executed on 
the nodes implementing the security network functions. Our 
evaluations show the proposed system to be an efficient and 
effective defense method against botnet attacks. The evaluation 
results demonstrated that the proposed system detects large-scale 
distributed network attacks from botnets at the SDN controller 
while the network functions locally detect known attacks across 
different networking protocols. 

Keywords—Software-defined networking, network Function 
Virtualization, Botnets, machine-learning 

I. INTRODUCTION 
 Massive compromised distributed hosts called botnets 

continue to interrupt and launch various network attacks on the 
Internet and other networked system applications, such as the 
Internet-of-Things (IoT), Smart Grid, and health systems [2, 3, 
4]. With the proliferation of botnets, attackers through botnets  
illegitimately access networked devices and launch various 
network attacks. For example, Mirai and its variants have 
attacked the Internet infrastructure to disrupt communications 
and operations [5, 6], launching more than several thousand 
attacks in 2017 [6]. The complexity of diverse heterogeneous 
networked devices and applications along with diverse network 
protocols makes it difficult to develop a generalized and 
integrated security framework against botnet-related attacks. 

Software-defined networking (SDN), providing the 
flexibility and the visibility of networks through programmable 
forwarding decisions, has changed the direction of defense 
methods against various network-based attacks [25, 28, 29, 
30]. With Network Function Virtualization (NFV), replacing 
hardware middleboxes with software-based network appliances 

in virtualization, SDN enables us to develop a scalable and 
elastic defense against increasingly disruptive distributed 
denial-of-service attacks [7, 9, 27].  Many security solutions 
using SDN/NFV to defend against network attacks have been 
proposed for the past decade [6, 8, 9, 10, 11, 20, 26, 27, 13, 14, 
16, 29]. They have mostly focused on network security issues 
related to the infrastructure of SDN/NFV itself [20, 27]. Some 
previous research has addressed network intrusion detection 
systems by implementing security applications on top of the 
SDN controller [9, 14, 29]. These solutions assume that all the 
traffic must first be transferred to the controller, which creates 
a bottleneck hampering timely intrusion detection. The 
overhead of having the traffic go through the controller only 
gets exacerbated with botnets because of the diversity of the 
routing paths that the attack traffic will take, further 
challenging the practicality of the solutions in the literature. In 
addition, the large scale of distributed botnet attacks and their 
various malicious actions create challenges in achieving 
scalability and flexibility as network size explodes, low latency 
to respond to network dynamics, and easy integration with 
different network types and applications. 

In this paper, we propose an SDN/NFV-based security 
framework to detect and mitigate botnet attacks by using 
SDN/NFV with a machine-learning technique. The proposed 
system implements virtualized network functions to 
immediately detect network attacks in the data plane by using 
NFV and the SDN controller to detect distributed stealthy 
botnet attacks using machine-learning in conjunction with 
NFV. In other words, the defense framework is divided in two 
parts: the data plane and the control plane. NFV in the data 
plane manages virtual network functions (VNF) in order to 
detect network attacks and to make a service chain of the VNFs 
according to traffic types. In addition, one of the VNFs keeps 
monitoring traffic and collecting the feature set information to 
be transferred into an SDN controller for machine-learning-
based intrusion detection. The SDN controller in the control 
plane makes a routing path decision and orchestrates VNF 
security services into the Internet with network 
programmability. With a machine-learning-based network 
traffic analysis, the controller detects and defends against 
abnormal network behavior with the real-time feature sets from 
the VNF.   

In the proposed system, the SDN controller works with the 
virtualization manager to monitor network behavior and to 



collect data from source to destination. It performs two steps to 
detect botnet attacks. The first detection action is performed by 
each network function, each targeting a specific attack related 
to each network protocol. The second detection action is 
conducted by machine-learning analysis in the SDN controller 
by extracting real-time traffic characteristics. Through this two-
level defense method, the SDN controller detects, or in the 
alternative  mitigates, potential botnet attacks and its variants 
by dropping malicious traffic. Therefore, our system not only 
detects and analyzes an attack but also prevents the 
propagation of the attack impact via defensive routing. 
Compared with the previous works, which forward all the 
traffic to the controller for intrusion detection, the proposed 
system needs to send only feature set information to the SDN 
controller. The controller can easily obtain real-time traffic 
information through one of the virtualized security network 
functions, called feature extractor in the data plane. In addition, 
well-known attacks can be immediately detected by individual 
VNFs to prevent a potential protocol vulnerability in a 
network.  

This paper contributes to botnet security in the following 
aspects. First, we proposed an integrated multi-dimensional 
network intrusion detection system (NIDS) against various 
botnet attacks based on the emerging network technique of 
SDN and NFV. Second, we achieve a real-time machine-
learning-based NIDS in the SDN since our designed VNF 
keeps extracting feature sets from real-time traffic and sends 
them to the SDN controller for further detection of distributed 
network attacks. Third, to the best of our knowledge, we are 
the first to integrate machine-learning with both SDN and NFV 
while VNFs keep extracting traffic feature sets for real-time 
data analysis. Most machine-learning-based intrusion detection 
systems have limitations to analyze real-time traffic. Fourth, by 
using NFV and its flexibility, we implemented many security 
network functions for various network protocols to detect 
network attacks. Our system design provides customizable IDS 
with high cost-efficiency, and high flexibility and elasticity to 
deploy VNFs. Finally, we evaluate the proposed system and 
compare it to historical malicious data sets and simulated 
botnet traffic to demonstrate the effectiveness and the 
efficiency of the proposed system. 

The paper is organized as follows. Section II summarizes 
related work. Section III presents our proposed system and 
explains each component of the proposed system in detail. 
Section IV explains our implementation and presents our 
experimental results to show our system’s effectiveness. 
Finally, we discuss our method and our future plans in Section 
VI and present our conclusion in Section V. 

II. RELATED WORK 
A botnet consists of compromised hosts (i.e. bot agents), a 

botmaster, and command and control (C&C) servers to carry 
out malicious activities on the Internet. Most of botnets utilize 
DNS to host their command and control (C&C) servers and 
they keep communicating with each other via HTTP to receive 
commands and to send their results to the remote servers 
managed by botmasters. Intensive traffic analysis for HTTP 
and DNS has been performed to detect and mitigate botnet-
related attacks [5, 6, 28, 52]. Maryman and Alireza 

summarized all possible botnet detection methods: signature-
based, anomaly-based, DNS-based, mining-based botnet 
detection approaches [28]. However, most of these rely on 
botnet protocols and, except for one DNS-based botnet 
detection method, none of them allow us to detect botnets in 
real-time [28].  In spite of extensive efforts, botnets still 
proliferate to negatively impact networks. The anonymity of 
botmasters and various communication protocols over a wide 
range of network topologies make it difficult to defend against 
botnet attacks [28]. Therefore, to effectively and efficiently 
monitor and defend against such large-scale distributed 
botnets, a new security framework is needed for real-time 
monitoring and detection system.  

The widespread use of SDN in recent years has brought 
with it a number of new security issues involving the three 
main layers of SDN: the application layer, the control plane 
(controller), and the data plane [12, 17, 25, 30]. One problem is 
that network applications in the controller threaten the 
controller's resilience because fallacious applications can cause 
fatal instabilities, unexpected vulnerabilities, and loss of 
network control [20, 26, 27]. Network intrusion detection 
systems in SDN using machine-learning have been proposed to 
detect network attacks [13, 14, 16, 29]. They are limited to 
monitor real-time traffic and focused on data analysis without 
real-time flow information and NFV. Hardware-based NFs 
present significant drawbacks including high costs, 
management complexity, slow time to market, and non-
scalability, to name a few [18, 19]. Different control 
frameworks for virtualized NFs have recently been proposed to 
address the safe scaling of virtual network functions [21, 22, 
23, 24]. Fayaz et al. proposed Bohatei, a flexible and elastic 
virtual DDoS defense system to effectively defend against 
DDoS attacks [7]. While Bohatei focused on only DDoS 
attacks by using only SDN/NFV with Bro, we developed our 
own security network functions to detect various network 
attacks and botnet attacks based on machine-learning with 
NFV/SDN. To achieve our ultimate goal, NFV monitors and 
collects real-time traffic information under the control of SDN.  

III. OUR APPROACH 

A. System Overview 
To defend against network attacks generated by botnets, 

our paper proposes a multi-dimensional intrusion detection 
system by using SDN and NFV. Our proposed system is 
scalable and elastic, enabling it to monitor large networks by 
analyzing incoming traffic and collecting traffic information at 
various entry points on the Internet. Figure 1 shows the overall 
system architecture using SDN and NFV to defend against 
botnet attacks, utilizing the full functionalities of SDN and 
NFV to monitor malicious traffic in real time.  

As in Figure 1, the SDN controller has three main 
functions; (1) making routing path decisions to maximize 
network utilization and fast virtual NIDS orchestration 
services, as described in Section III C; (2) performing 
machine-learning based network monitoring to detect 
malicious traffic by using the Random Forest algorithm, which 
might be missed by the VNF, and thus improve attack accuracy 
as explained in Section Section III D; and (3) managing flow 
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rules to change network behavior, e.g., bandwidth control,  
through the programmable data plane in switches, as presented 
in Section III E.  

The NFV in Figure 1 plays an important role in defending 
against common protocol-specific attacks by using different 
network functions (NF) for different protocols. First, it 
provides the intrusion detection VNF management to maintain 
a pool of NFs with a virtual machine manager, as described in 
Section III B. Second, it dynamically spawns a chain of VNF 
services according to traffic characteristics instead of 
monolithic bulky virtual instances, as in Section III C. Lastly, 
one of the VNFs collects various information from real-time 
incoming traffic to be provided for machine-learning-based 
NIDS in the SDN controller. Figure 2 presents detailed system 
components to achieve our ultimate goal. In the following 
subsections, we now describe each component. 

 

Fig. 1. An integrated multi-dimensional network intrusion detection system 
based on  SDN/NFV 

B. Virtual Network Functions for Intrusion Detection 
We first implement individual intrusion detection functions 

for protocol-specific network appliances for virtual network 
functions, which we refer to as the micro intrusion detection 
network function (mVNF). Figure 2 shows its components: a 
traffic classifier, protocol-dependent VNFs, and a feature 
extractor with service-chaining by a virtual machine manager. 
The virtual machine manager virtualizes a set of mNFs to 
provide micro-services in NFV with unique features: cost-
efficiency in resources, customization, scalability, and 
reusability since the micro-services architecture breaks down a 
single large application into smaller components to 
individually utilize a particular service in a scalable and 
flexible way [32, 33]. Instead of using the existing bulky 
monolithic IDS, we design each intrusion detection component 
for each communication protocol from the application layer to 
the network layer to include various protocols popularly used 
in botnets [34], such as HTTP and DNS. 

The set of micro-NF (each of which are denoted by mVNFi 
where i distinguishes the virtual network security functions) is 
implemented to defend against well-known network attacks 
related to each network protocol, such as HTTP, DNS, TCP, 
UDP, ARP and IP. For example, if botnets are using a DNS 
protocol to identify their C&C servers, our system needs to 
examine traffic with the VNFs of DNS and UDP. In addition, 
when bots deliver malware into the Internet, the host needs to 
be compromised, for example by spoofing based on the ARP 
protocol. Thus, the first defense method should detect such 
ARP-related attacks to prevent bots from compromising hosts. 
The proposed system implements an individual mVNFi function 
for each network protocol while considering various attack 

techniques. In addition, the traffic classifier is another mVNFi 
function to identify traffic types according to each protocol, as 
shown in Figure 3. The traffic classifier classifies incoming 
traffic types to form the correct service chain of VNFs for each 
protocol. Depending on the traffic type, a set of VNFs needs to 
be spawned to monitor traffic according to traffic 
characteristics. 

The most important function of VNFs is a feature extractor 
(mVNF i) in the data plane for the machine-learning-based 
intrusion detection in the control plane. The feature extractor 
keeps monitoring incoming traffic and extracting information 
for feature sets that must be used for machine-learning analysis 
for intrusion detection in the controller. The number of feature 
sets ranges from ten to several hundreds, depending on 
different machine-learning algorithms. Because of performance 
bottlenecks in the switches, a lot of data for feature sets cannot 
be extracted inside switches even though the statistical 
manager in the SDN controller keeps polling the traffic 
statistical information for simple traffic monitoring.  Therefore, 
it would be critical to implement a separate VNF dedicated to 
feature extraction for machine-learning for timely detection. 
The feature extractor function keeps extracting real-time traffic 
features, such as IP addresses, port numbers, service types, 
packet sizes, which are transferred into the SDN controller for 
machine-learning analysis for intrusion detection. Botnets 
usually launch distributed attacks by coordinating with a group 
of bots remotely. Stealthy distributed botnet attacks can be 
identified by machine-learning analysis in the control plane 
with real-time traffic information. Thus, our proposed system 
implements a special purpose virtual network function which 
mainly extracts all packet information to be used for feature 
sets across the Internet. The machine-learning method for IDS 
in the controller is described in detail in Section III D. For 
example, if the traffic classifier identifies incoming traffic as 
HTTP traffic, our system makes a chain of at least three mVNF 
functions such as, HTTP, TCP, and the feature extractor. 
Therefore, to monitor network attacks related to HTTP traffic, 
we have a virtual intrusion detection network function 
(VNIDS) with these three network functions expressed as 
VNIDSi = {mVNF 1, mVNF2, mVNF3} (Note that i is the 
number of mVNFi ). Any set of VNIDS can be distributed 
throughout the Internet. 

Each micro-NF (mVNFi) examines standard protocol 
specifications according to each RFC for each protocol in order 
to validate packet header information compliance and also 
includes a detection method to identify well-known network 
attacks related to each protocol, such as HTTP attacks [48, 55], 
DNS [40, 41], TCP attacks [42, 43, 44, 45], UDP attacks [34], 
ARP attacks [15], and IP attacks [31]. Due to space limitations, 
we have omitted a detailed explanation of each attack related to 
each protocol, and explain only HTTP and DNS protocols, 
which are the main protocols used by botnets. First, we verify 
all HTTP and DNS header information according to RFC 7231 
and RFC 1035 and related standard documents. We implement 
a detection method to identify known DNS attacks such as 
DNS bomb attacks, DoS attacks using recursive DNS queries, 
and DNS amplification attacks. The micro-NF (mVNFi ) for 
HTTP protocols can detect HTTP flooding attacks by using 
GET or POST commands. To detect such attacks, we check a 



specific value to detect a specific action, for example setting a 
recursive bit in DNS or setting a threshold to count the number 
of particular packets to detect DoS attacks. In addition, we 
compare source IP addresses with destination IP addresses for 
the same origin security policy to detect a man-in-the-middle 
attack by using ARP. Details of implementation are explained 
in Section IV. 

 

Fig. 2. The procedure of each componet for the proposed distributed security 
framework based on SDN/NFV. 

C. Routing Path Decision and Orchestration  
The SDN control plane keeps monitoring current network 

topology and network bandwidth usage to determine the best 
path from source to destination instead of the shortest path 
routing algorithm popularly used for routing in SDN. To 
measure effective bandwidth, the controller polls byte rates 
(i.e. transmission rates) for each port in the switches. The 
controller computes the maximum bandwidth by evaluating all 
possible paths (Pij = {P12, P13, …. , Pij}, Note that i,j= {1, … , 
n}) between a source (i) and a destination (j). The controller 
then selects the highest available bandwidth path after 
considering all paths. The total bandwidth is B=∑(bij)  (i.e. 
i,j= {1, … , n}) for all paths between two nodes after summing 
each link bandwidth bij for each path Pij. Note that bij is the 
link bandwidth between a node Ni and its neighboring node Nj 
(not a destination node). Therefore, the controller chooses the 
most available bandwidth (i.e. the maximum total bandwidth 
(B)) from source to destination.  

With the maximum available bandwidth, our proposed 
system maximizes network utilization based on high 
transmission rates and fast traffic processing times to 
efficiently provide our security services. When the controller 
determines a routing path, the controller orchestrates security 
services in the designated path by making a chain of security 
services with the virtual machine manager in NFV on switches. 
Figure 3 shows an example of service chaining for NFV 
orchestration in the proposed system. The SDN controller 
keeps communicating with the virtual machine manager to 
provide VNF services for network intrusion detection on 
designated paths from source to destination. Figure 3 shows 
security services for HTTP, DNS, TCP, UDP and IP along 
with the traffic classifier used to recognize specific traffic 
types. The service chain of VNFs can be deployed linearly or 
in parallel. When the traffic classifier recognizes traffic types, 
other VNFs can examine traffic in parallel. For example, after 
classifying HTTP traffic using the traffic classifier, the VNF 
for HTTP, the VNF for TCP, and the VNF for the feature 

extractor can examine traffic in parallel for fast traffic 
processing time. 

 

Fig. 3. VNF orchestration services 

D. Machine-learning-based Network Monitoring 
As shown in Figure 2, the SDN controller continues to 

monitor real-time traffic using a machine-learning algorithm to 
detect malicious traffic. First, with the public botnet dataset 
(CTU-13 [53]) as described in Section IV, the proposed system 
has an attack model generated by the Random Forest algorithm 
[37]. Our proposed system does not focus on machine-learning 
techniques themselves, so we will not detail the machine-
learning techniques used to generate an attack model by using 
the Random Forest algorithm. We used eleven feature sets to 
generate an attack model by using the public dataset. The 
feature sets included traffic information including 
source/destination addresses and port numbers, flags, type of 
services, protocols, and bytes. The SDN controller collects the 
feature set information of real-time traffic using the feature 
extractor network function in the data plane, retains the attack 
model with the public dataset using the Random Forest 
algorithm in the control plane, and utilizes the attack model to 
detect real-time botnet attacks. 

Different from typical machine-learning-based intrusion 
detection systems, which rely solely on historical data analysis 
for network intrusion, the proposed system also analyzes and 
collects real-time traffic information through the feature 
extractor as a virtual network function in NFV. With the help 
of NFV, the controller effectively uses the generated attack 
models to monitor real-time traffic. In other words, the attack 
model is generated with well-defined historical datasets. The 
distributed feature extraction network function on the Internet 
continues to monitor and collect the feature information in the 
data plane to be used by the machine-learning algorithm in the 
controller. Most machine-learning techniques require a huge 
set of feature information, which overwhelms the switches, 
slowing transfer to the statistical manager in the SDN 
controller; hence, our designed feature extraction virtual 
network function in NFV plays an important role in addressing 
this problem and providing real-time traffic analysis to 
improve machine-learning-based intrusion detection in SDN 
with NFV. The controller makes a decision as to whether 
incoming traffic in SDN is malicious or not within a given 
confidence score by matching incoming traffic with the 
generated attack models. The controller drops incoming traffic 
when the match with existing attack models exceeds that 
threshold.  

E. Flow Rule Management 
As a threat response module, the flow rule manager in the 

SDN controller in Figure 2 reacts to intrusion detection by 
controlling current bandwidth and installing new flow rules. 
When abnormal behavior is detected, the SDN controller 
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pushes new flow rules to drop malicious packets, such as 
DoS/DDoS and other network attacks, or to reduce bandwidth 
to slow down massive traffic, such as elephant flows or 
unknown traffic, which degrades network performance. There 
are many network attacks that can be countered by just 
modifying the network bandwidth to some extent [35, 36]. The 
value of the bandwidth is determined by the controller, making 
it possible for the system to scale up and scale down the 
bandwidth as needed. The virtual security network functions 
immediately drop malicious packets when attacks are detected 
by virtual security NFs in NFV, e.g., deterministic attack 
patterns. Based on these threat response methods in the SDN 
controller, the proposed framework autonomously mitigates 
network abnormalities while improving overall network 
utilization. 

IV. EVALUATION 

A. Implementation and Setup 
We implemented our proposed system by using ClickOS 

[38] with Click version 2.0.1 and Xen hypervisor version 4.4.1 
and Floodlight version 1.2 [39]. ClickOS is an open source 
network function virtualization platform, consisting of a set of 
click elements to develop various network functions [38]. We 
implemented eight separate click files (HTTP, DNS, TCP, 
UDP, IP, ARP, a traffic classifier, and a feature extractor) into 
ClickOS by adding many new click elements to cover various 
network attacks for each protocol. For example, the traffic 
classifier was extended by utilizing IPFilter and IPClassifier in 
ClickOS to classify various protocols including the application 
protocols like HTTP and DNS. The DNS click file includes a 
function to examine the DNS header information and to detect 
DNS-related attacks, such as DNS bomb attacks [40], DNS 
recursive query attacks [41], and DNS flooding attacks. The 
TCP click file includes a detection function for TCP SYN 
flooding attacks, TCP RST attacks, and attacks related to TCP 
sequence numbers [42, 43, 44, 45]. The machine-learning 
system in Floodlight was implemented in Python and the flow 
rule management was implemented in REST APIs to push 
commands to change flow tables through the SDN controller. 

Figure 3 shows our testbest in CloudLab, an open cloud-
based laboratory supported by NSF [1]. We created six hosts in 
different servers in CloudLab and three hosts were installed 
with Open vSwitch version 2.3, one SDN controller and two 
end hosts. Each host had Ubuntu 14.0 with two Intel core 2.9 
GHz with 8GB RAM. For malicious traffic, we used BoNeSi 
[46], the DDoS botnet simulator to generate HTTP flooding 
and DNS attacks. As described in Section III D, to generate an 
attack models for botnets, we used CTU-13 datasets [53] which 
were botnet traffic datasets collected by CTU University in 
Czech Republic. The CTU-13 datasets included various botnet 
attacks like spam and DDoS attacks with IRC, P2P or HTTP 
protocols.   

 

Fig. 4. Testbed in CloudLab 

B. Experimental Results 
We evaluated various aspects of our proposed system, 

including processing time, CPU usage, throughput, and 
network latency. In addition, we tested the performance of our 
feature extractor with machine-learning analysis in the SDN 
controller. 

 

Fig. 5. CPU Usage 

CPU Usage: Figure 5 shows the CPU usage according to 
the number of network functions. As the number of each VNF 
increased, the CPU usage also increased. However, up to 20 
VNFs, the proposed system used around 3.5% of CPU in total.  
For memory usage, the entire ClickOS only required 5MB with 
quick booting time as presented in [38].  Regardless of the 
number of VNFs, our proposed system also required somewhat 
less than 5MB.  

 

Fig. 6. Processing Time (Note that the results shows the combination of 
different by mVNFi. VNFtc is a traffic classifier. VNFfe is a feature extractor. 
The other VNF is  related to each protocol.) 

Processing Time: Figure 6 presents traffic processing time 
at different settings of various VNFs in a single switch. We 
generated different transmission rates from source (Host 1) to 
destination (Host 2) with different combinations of VNFs in 
linear or in parallel. Both Case 2 and Case 3, which have linear 
service chains of four or five VNFs, showed the slowest 
processing times since the traffic had to be linearly and 
individually examined. Except for these two cases, other test 
cases demonstrated that each VNF is able to nearly double the 
processing speed of analyzing all the traffic. As traffic size 
increased, the processing time also increased only slightly in all  
cases, even when many NFV functions were running in 
parallel. 
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Switch 3 
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Fig. 7. The througput of our system 

 

Fig. 8. The network lantency of our system 

Network Performance: Figures 7 and Figure 8 show 
throughput and network latency of our proposed system with or 
without attacks to demonstrate the effectiveness of our system 
by showing the throughput increase/recovery as the network 
controller adapts the network flow control. 1GB of benign 
traffic, excluding the attack traffic, was sent from Host 1 to 
Host 2. In Figure 7, to evaluate our proposed system, we 
generated 10GB of attack traffic by using BoNeSi. The 
experimental results demonstrated that with attack traffic, our 
system using SDN/NFV can rapidly recover the original 
throughput and small network latency. Figure 8 shows the 
network latency at different transmission rates. We generated 
the same amount of attack traffic with each transmission rate to 
measure the network latency. For example, when we sent 
10GB traffic, we also generated 10GB DNS attack traffic by 
using BoNeSi. Under serious attacks, our system showed a 
little network latency which was comparable to the original 
SDN system without attacks. Therefore, these experiments 
demonstrated the effectiveness of the proposed system to 
detect attacks using SDN and NFV.  

Performance of machine-learning analysis: We tested the 
botnet attack datasets from CTU-13 datasets [53] to generate 
an attack model in the SDN controller. The dataset had a total 
of 10,48,576 network flows with a total data size of around 
24MB. The dataset included 500 botnet flows and 500 normal 
flows, as described in [52], we used the ten features, such as 
duration, source and destination addresses, source and 
destination port numbers, service types, total packets and bytes, 
protocol, flags. 70% of the datasets used were for training sets, 
and the rest of the datasets were used for testing sets by 
randomly selecting data. When the confidence socre is 0.5, our 
results showed 100% accuracy along with a 92% true positive 
rate and a 10% false positive rate.  

To test real-time botnet attack detection with the generated 
attack models of the CTU-13 datasets by using SDN/NFV, we 
evaluated synthetic traffic generated by the BoNeSi simulator, 
and real Mirai traffic generated by the public Mirai code [49]. 

To capture the Mirai traffic, we ran the Mirai code in 
Raspberry Pi and captured traffic using WireShark. In addition, 
we generated BoNeSi traffic to evaluate our proposed system. 
The feature extractor in ClickOS collected feature information 
for the captured synthetic and real botnet traffic (i.e. Mirai) for 
machine-learning analysis in the controller. Table I shows the 
results of our machine-learning analysis with real-time traffic. 
For BoNeSi, we collected 34,915 flows in total with 14MB. 
We obtained 6,930 Mirai flows in total with 831KB. Our 
results for Mirai traces showed 100% accuracy along with a 
98% true positive rate and an 11% false positive rate. BoNeSi 
traces resulted in 98% accuracy with a 92% true positive rate 
and a 12% false positive rate. As expected, with the historical 
archived known attack data sets, the machine-learning 
algorithm gave good results to detect botnet attacks. As future 
work, we will reduce false positive rates for real-time 
malicious traffic with the trained attack model through a 
sophisticated feature engineering technique [50, 51].  

TABLE I.  THE RESULTS OF THE RANDOM FOREST ALGORITHM 

 CTU-13 Dataset BoNeSi Mirai  

True Positive 0.92 0.92 0.98 

False Positive 0.10 0.12 0.11 

Accuracy 1.00 0.98 1.00 

V. DISCUSSION AND CONCLUSION 
This paper proposes a distributed security system using 

virtual security functions in NFV with an SDN controller to 
defend against botnet attacks. The security network functions 
detect well-known protocol-specific attacks while continuing 
to extract traffic feature set information in the data plane for 
further machine-learning analysis in the controller. By 
combining SDN with NFV, the proposed system can monitor 
incoming traffic on the switches and detect malicious behavior 
in a network in real time, while matching real-time traffic 
information with an attack model generated by machine-
learning. This work produced an initial integrated security 
system based on SDN/NFV by utilizing the main 
functionalities of those new technologies combined with 
machine-learning. To improve our proposed system, we first 
need to cover more protocols and attacks to defend against 
general attacks and botnet attacks. Second, attackers can 
generate false datasets to defeat machine-learning analysis. To 
improve our machine-learning analysis, we need to distinguish 
fake datasets and authentic datasets through more sophisticated 
virtual security network functions against adversarial machine-
learning problems. Last, we can embed more threat response 
methods instead of controlling only flow rules.  
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